
Equations in groups, formal languages

and complexity

Alexander Levine

Submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

Department of Mathematics,

School of Mathematical and Computer Sciences.

May, 2022

The copyright in this thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

ii

Abstract

We study the use of EDT0L languages to describe solutions to systems of equa-

tions in various classes of groups. We show that solutions to systems of equations

with rational constraints in virtually abelian groups can be expressed as EDT0L

languages. We also study the growth series of these solutions. In addition, we show

that the class of groups where solutions can be described using EDT0L languages

is closed under direct products, wreath products with finite groups and passing to

finite-index subgroups, using standard normal forms in each of the constructions.

Using these operations together, we show that the solutions to systems of equations,

when expressed as suitable quasi-geodesic normal forms, in virtually direct prod-

ucts of hyperbolic groups, including dihedral Artin groups, can be described using

EDT0L languages. We conclude by showing that single equations in one variable in

the Heisenberg group can also be expressed using EDT0L languages, with words ex-

pressed in Mal’cev normal form. Proving this requires us to first show that solutions

to quadratic equations in the ring of integers are EDT0L.

Acknowledgements

First of all, I would like to thank my supervisor Laura Ciobanu for the incredible

amount of mathematical guidance, feedback on work and help with applications she

has given me during my time at Heriot-Watt. I would also like to thank her for

introducing me to EDT0L languages. I’ve greatly enjoyed learning about them and

applying them to group theory.

I would like Alex Evetts and Alan Logan for the various bits of advice they have

given about various aspects of academic life, as well as the many mathematical

discussions we’ve had.

I would also like to thank Alex Bishop, Gemma Crowe, Murray Elder, Albert Gar-

reta, Nick Gilbert, Antoine Goldsborough, Mark Lawson, Alexandre Martin, Ross

Paterson, Alessandro Sisto and Nicolas Vaskou for discussions and mathematical

advice, and the sharing of helpful knowledge and insight.

Thanks are also due to my flatmate Joshua Dibble for very patiently listening to me

talk about languages and groups for the last three years, and for being a very nice

person to live with, particularly during lockdown.

Finally, I would like to thank my family for their love and support throughout this

process. In particular, I wish to thank my fiancée Isaree for her love, and for all of

her patience with many of the drawbacks of being with someone in academia.

Page 1 of 2
RDC Clerk/Apr 2019

Research Thesis Submission
Please note this form should be bound into the submitted thesis.

Name: Alexander Levine

School: Mathematical and Computer Sciences

Version: (i.e. First,
Resubmission, Final)

Final Degree Sought: PHD

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1. The thesis embodies the results of my own work and has been composed by myself
2. Where appropriate, I have made acknowledgement of the work of others
3. The thesis is the correct version for submission and is the same version as any electronic versions submitted*.
4. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian
may require

5. I understand that as a student of the University I am required to abide by the Regulations of the University and to
conform to its discipline.

6. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g.
Turnitin.

ONLY for submissions including published works
Please note you are only required to complete the Inclusion of Published Works Form (page 2) if your thesis contains
published works)

7. Where the thesis contains published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) these are accompanied

by a critical review which accurately describes my contribution to the research and, for multi-author outputs, a
signed declaration indicating the contribution of each author (complete)

8. Inclusion of published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) shall not constitute plagiarism.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of
Candidate:

 Date:

Submission

Submitted By (name in capitals): ALEX LEVINE

Signature of Individual Submitting:

Date Submitted:

For Completion in the Student Service Centre (SSC)

Limited Access Requested Yes No Approved Yes No

E-thesis Submitted (mandatory for final
theses)

Received in the SSC by (name in capitals): Date:

16/05/2022

16/05/2022

Page 2 of 2
RDC Clerk/Apr 2019

Inclusion of Published Works
Please note you are only required to complete the Inclusion of Published Works Form if your thesis contains
published works under Regulation 6 (9.1.2)

Declaration

This thesis contains one or more multi-author published works. In accordance with Regulation 6 (9.1.2) I hereby declare
that the contributions of each author to these publications is as follows:

Citation details Alex Evetts and Alex Levine, Equations in virtually abelian groups:

Languages and growth, Internat. J. Algebra Comput. 32 (2022), no. 3, 411–
442.

Author 1

Equal effort; all work was jointly discussed and worked on together

Author 2

Equal effort; all work was jointly discussed and worked on together

Signature:

Date:

16/05/2022

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Formal languages . 7

2.2 Free monoids . 9

2.3 Space complexity . 9

2.4 Regular languages . 10

2.5 Rational and recognisable subsets of monoids 15

2.6 Group equations and languages . 16

2.6.1 Group equations . 16

2.6.2 Solution languages . 19

3 EDT0L languages 23

3.1 Introduction . 23

3.2 EDT0L languages . 24

3.3 Alternative definitions and closure properties 26

i

CONTENTS

4 Equations in virtually abelian groups 34

4.1 Introduction . 34

4.2 Preliminaries . 37

4.2.1 Polyhedral sets . 37

4.2.2 Multivariable finite-state automata 39

4.2.3 Multivariable solution languages 44

4.3 Solution languages in virtually abelian groups 46

4.4 Relative growth of algebraic sets . 64

4.4.1 Structure of virtually abelian groups 67

4.4.2 Univariate growth series of algebraic sets 69

4.4.3 Multivariate Growth Series . 73

5 Equations in extensions 76

5.1 Introduction . 76

5.2 Preliminaries . 78

5.2.1 Dihedral Artin groups . 78

5.2.2 Schreier generators . 78

5.3 EDT0L languages about a distinguished letter 82

5.4 Equations in extensions . 90

5.5 Recognisable constraints and finite index subgroups 95

5.6 Virtually direct products of hyperbolic groups 98

ii

CONTENTS

6 Equations in the Heisenberg group 104

6.1 Introduction . 104

6.2 Preliminaries . 107

6.2.1 Nilpotent groups . 107

6.2.2 Mal’cev normal form . 108

6.2.3 Equations in the ring of integers 110

6.2.4 Solution languages . 111

6.3 ‘Dividing EDT0L’ languages by a constant 112

6.4 Pell’s equation . 117

6.5 Quadratic equations in the ring of integers 132

6.6 From Heisenberg equations to integer equations 142

7 Equations in class 2 nilpotent groups 151

7.1 Mal’cev generators . 152

7.2 Transforming equations in nilpotent groups into equations over Z . . 155

7.3 Equations in virtually Heisenberg groups 166

A Context-free and indexed languages 170

A.1 Context-free languages . 170

A.2 Indexed languages . 173

B L-Systems 176

B.1 ET0L languages . 177

iii

CONTENTS

B.2 CSPD Automata . 179

B.3 EPDT0L languages . 181

B.4 The Copying Lemma . 183

B.5 DT0L languages . 183

B.6 HDT0L, NDT0L, WDT0L and CDT0L languages 184

B.7 WPDT0L and HPDT0L languages 194

B.8 ET0L languages and indexed languages 198

Bibliography 201

iv

Chapter 1

Introduction

Formal languages have been used in a variety of settings with finitely generated

groups over the last few decades. This is, in part, because a finite generating set for

a group can be thought of as an alphabet, with any set of words over the generating

set being a language that is easily associated with a subset of the group itself. In

1971, Anisimov proved that the set of all words over a generating set for a group G

that represent the identity element, called the word problem of G, forms a regular

language if and only if G is finite [5]. This deep connection between formal languages

and group theory has evolved over the subsequent decades with a number of striking

results. Perhaps one of the most celebrated is the result of Muller and Schupp,

finished later by Dunwoody, which states that the word problem of a group is a

context-free language if and only if the group is virtually free ([74], [37]).

Languages can also be used to study the growth series of a group: a group with a

regular geodesic normal form has a rational growth series. Regular languages can be

used to describe (λ, µ)-quasi-geodesics in hyperbolic groups if λ and µ are rational

[54]. In addition, languages have been used to study conjugacy representatives in

various classes of groups ([21], [55]). The complement of the word problem has

also been studied for a wide variety of groups, including Thompson’s groups, the

Grigorchuk group and Baumslag-Solitar groups ([10], [20], [57], [12], [62] [48]).

The primary focus of this thesis will be the use of languages to describe solutions to

1

Chapter 1: Introduction

equations in groups. Equations are a generalisation of two of Dehn’s decision prob-

lems for groups: the word problem and the conjugacy problem (checking whether

any given pair of elements g and h in a group G are conjugate). An equation in a

group G is an identity w = 1, where w is a word over G together with a finite set

of variables and their inverses. A solution to an equation is an assignment of an

element of G to each variable, such that plugging this into w yields a word equivalent

to 1. Thus the conjugacy problem in a group G can be thought of as solving the

equation X−1gXh−1 = 1 for all g, h ∈ G.

Since the 1960s, many papers have discussed algorithms to decide whether or not

equations in a variety of different classes of groups admit solutions. A first major

positive result in this area is due to Makanin, during the 1980s, when he proved that

it is decidable whether a finite system of equations in a free group is satisfiable ([67],

[68], [69]). Since then, Makanin’s work has been extended to show the decidability

of the satisfiability of equations in hyperbolic groups ([82], [27]), solvable Baumslag-

Solitar groups [60], right-angled Artin groups [33] and more.

Whilst Makanin’s work can determine if an equation admits a solution, it does not

describe the set of solutions. Razborov later created a method that allows one to

construct the solutions to systems of equations in a free group ([79], [80]). Since

sets of solutions are often infinite, there are multiple ways they can be represented,

if at all. One method in which solutions can be described is by expressing the set

of solutions as a language, and then defining a grammar for the language.

In 2016, Ciobanu, Diekert and Elder successfully employed languages to describe the

set of solutions to systems of equations in free groups [17]. The class of languages

used was the class of EDT0L languages. Diekert and Elder generalised this to

virtually free groups [31], and Diekert, Jeż and Kufleitner extended it to right-

angled Artin groups [32]. Hyperbolic groups ([18], [19]), virtually abelian groups

[47] and virtually direct products of hyperbolic groups [65] followed later. Context-

free languages do not in general work for describing equations. Even in Z, the system

X = Y and Y = Z would have the solution language {ax#ax#ax | x ∈ Z} with

respect to the standard normal form, and this is not a context-free language.

2

Chapter 1: Introduction

Figure 1.1: Reading left to right gives the strict containments of the classes of
languages

Regular

EDT0L

Context-free

ET0L Indexed

Of course, it is possible to represent solutions in different language-theoretic ways,

such as by writing solutions as tuples of words. This yields some results in the

virtually abelian case, where solutions are shown to be accepted by multivariable

finite-state automata, which we explore in Chapter 4. However, in most other classes

of groups studies, this has not been shown to work. In the Heisenberg group, which

is considered in Chapter 6, single equations with one variable will not in general

have a context-free solution language, so EDT0L does appear to be more fitting.

In the 1960s, Lindenmayer introduced a collection of classes of languages called L-

systems, which were originally used for the study of growth of organisms. EDT0L

languages are one of the L-systems, and were introduced by Rozenberg in 1937 [85].

L-systems, including EDT0L languages, were the focus of a number of computer

science articles in the 1970s and early 1980s. Since Ciobanu, Diekert and Elder’s

use of EDT0L languages to study equations in free groups, a number of other works

have used EDT0L languages (or a similar class called ET0L languages) ([11], [14],

[20]). Figure 1.1 shows how EDT0L and ET0L languages fit into the Chomsky

hierarchy of languages.

The structure of this thesis is as follows. Chapter 2 covers the preliminary informa-

tion used in later chapters, including formal languages, space complexity, regular,

context-free and indexed languages, rational and recognisable subsets of groups, and

group equations. Chapter 3 includes the definition of EDT0L and ET0L languages,

and aims to provide a comprehensive introduction to these classes. It contains proofs

of a number of results from the 1970s.

3

Chapter 1: Introduction

Chapter 4 is based on the joint work of the author with Alex Evetts [47] and the

author’s work [65], and covers the proof that solutions to systems of equations in

virtually abelian groups can be represented as EDT0L languages. We prove the

following:

Theorem 4.3.16. The solution language to any system of equations with rational

constraints in a virtually abelian group is accepted by a multivariable finite-state

automaton.

Corollary 4.3.17. The solution language to any system of equations with rational

constraints in a virtually abelian group is EDT0L.

We also consider the growth series of solutions to equations in virtually abelian

groups.

Theorem 4.4.3. Let G be a virtually abelian group. Then every algebraic set of G

has rational weighted growth series with respect to any finite generating set.

Corollary 4.4.21. Every algebraic set of a virtually abelian group has holonomic

weighted multivariate growth series.

Chapter 5 is based on the author’s work [65], and proves that the solution languages

to systems of equations in various extensions of groups are EDT0L. This is used to

show that solutions to systems of equations in virtually direct products of hyperbolic

groups, including dihedral Artin groups, can be expressed as EDT0L languages. We

show:

Theorem 5.1.1. Let G and H be groups where solution languages to systems of

equations are EDT0L, with respect to normal forms ηG and ηH , respectively, and

EDT0L systems are constructible in NSPACE(f), for some function f : Z≥0 → Z≥0.

Then in the following groups, solutions to systems of equations are EDT0L, and an

EDT0L system can be constructed in NSPACE(f):

4

Chapter 1: Introduction

1. G o F , for any finite group F (Proposition 5.4.5);

2. G×H (Proposition 5.4.6);

3. Any finite index subgroup of G (Proposition 5.5.3);

In the following groups, solutions to systems of equations are EDT0L, and an EDT0L

system can be constructed in NSPACE(n4 log n):

4. Any group that is virtually a direct product of hyperbolic groups (Corollary

5.6.9);

5. Dihedral Artin groups (Corollary 5.6.10).

If ηG and ηH are both quasi-geodesic or regular, then the same will be true for the

normal forms used in (1), (2) and (3). It is possible to choose normal forms for

the groups that are virtually direct products of hyperbolic groups in (4), and dihedral

Artin groups in (5) that are regular and quasi-geodesic.

Chapter 6 is based on the author’s work [66], and covers single equations in one vari-

able in the Heisenberg group. This is done by first expressing solutions to quadratic

Diophantine equations in the ring of integers as EDT0L languages, as in Theorem

6.5.15. We show the following:

Theorem 6.6.5. Let L be the solution language to a single equation with one vari-

able in the Heisenberg group, with respect to the Mal’cev generating set and normal

form. Then

1. The language L is EDT0L;

2. An EDT0L system for L is constructible in NSPACE(n8(log n)2), where the

input size is the length of the equation as an element of H(Z) ∗ F (X).

Theorem 6.5.15. Let

αX2 + βXY + γY 2 + δX + εY + ζ = 0

be a two-variable quadratic equation in the ring of integers, with a set S of solutions.

Then

5

Chapter 1: Introduction

1. The language L = {ax#by | (x, y) ∈ S} is EDT0L over {a, a−1, b, b−1, #};

2. Taking the input size to be max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|), an EDT0L system

for L is constructible in NSPACE(n4 log n).

In Chapter 7 we explicitly construct the systems of equations in the ring of integers

that single equations in class 2 nilpotent groups are ‘equivalent’ to. We then use

this to show that the satisfiability of single equations in virtually the Heisenberg

group is decidable.

Theorem 7.3.6. The single equation problem in a virtually Heisenberg group is

decidable.

Further work includes using some of the explicit constructions in Chapter 7 to show

equations in more than one variable in the Heisenberg group are or are not EDT0L

with respect to the Mal’cev normal form. This could also be extended to show that

the satisfiability of single equations in virtually a class 2 nilpotent groups with a

virtually cyclic commutator subgroup is decidable.

6

Chapter 2

Preliminaries

In this chapter we cover the preliminaries which we will need for later chapters. We

start with the basic definitions of formal languages and space complexity. We then

cover the definitions of three standard classes of languages: regular, context-free

and indexed. Using the definition of regular languages, we can define rational and

recognisable subsets of groups. We conclude with definitions and examples of group

equations, as well as ways in which we can represent their solutions as languages.

Notation 2.0.1. Please note the following notation conventions:

1. Functions will be written to the right of their arguments; that is (x)f or xf

will be used instead of f(x);

2. If S is a subset of a group, we define S± = S ∪ S−1, where S = {s−1 | s ∈ S}.

2.1 Formal languages

Formal languages have been used across mathematics, computer science and linguis-

tics for a variety of purposes. Many different classes of languages exist, often defined

by a type of grammar. Using a language to represent a decision problem can mea-

sure a type of ‘complexity’ for the problem. This type of complexity is often related

to space complexity. In Chapters 4 to 6 we will assign a ‘language complexity’ to

the solutions to systems of equations in certain classes of groups.

7

Chapter 2: Preliminaries

We start with the definition of an alphabet, a word and a language.

Definition 2.1.1. An alphabet is a finite set. Elements of an alphabet are called

letters.

A finite sequence (a1, . . . , an) of letters in an alphabet Σ is called a word over Σ,

and denoted a1 · · · an. A language over Σ is a set of words over Σ.

The empty word is the word obtained from an empty sequence (over any alphabet),

and is denoted by ε.

We gives some examples of languages.

Example 2.1.2.

1. The set of words in the English dictionary is a finite language over the alphabet

{a, . . . , z} with a few extra symbols;

2. The set {ε, a, a2, . . .} of all words over the single-letter alphabet {a} is a

language;

3. The set of all binary strings with the same number of 0s as 1s is a language

over the alphabet {0, 1}.

We introduce two standard operations on languages.

Definition 2.1.3. Let L and M be languages. The Kleene star closure of L, denoted

L∗, is defined by

L∗ = {w1 · · ·wn | n ∈ Z≥0, w1, . . . , wn ∈ L}.

The concatenation of L with M , denoted LM , is defined by

LM = {uv | u ∈ L, v ∈M}.

Remark 2.1.4. If Σ is an alphabet then Σ∗ is the set of all words over Σ.

We give some examples of the use of concatenation and Kleene star closure.

8

Chapter 2: Preliminaries

Example 2.1.5. Let L = {a}∗ = {ε, a, a2, . . .}, and letM = {b}∗ = {ε, b, b2, . . .}.

1. The concatenation LM is the language {ambn | m, n ∈ Z≥0};

2. The Kleene star closure of L is L;

3. The Kleene star closure of LM is {a, b}∗.

2.2 Free monoids

Free monoids and homomorphisms between free monoids appear throughout lan-

guage theory and are central to the definition of an EDT0L language. We give a

brief definition of a free monoid. Note that within this thesis we will only be consid-

ering finitely generated free monoids; however, the definition extends easily to the

infinite case.

Definition 2.2.1. Let Σ be a finite set. The (finitely generated) free monoid on Σ,

denoted Σ∗, is the monoid of all words over Σ, with the operation of concatenation.

Remark 2.2.2. We are using the same notation Σ∗ to denote both the free monoid

on Σ and the underlying set of the free monoid (the set of all words over Σ).

Remark 2.2.3. We will frequently refer to a free monoid homomorphism. This is

a homomorphism φ : Σ∗ → ∆∗ for some free monoids Σ∗ and ∆∗. Note that to fully

define φ, we only need to know where every element of Σ goes, as the fact that φ is a

homomorphism determines the action of φ from its action on Σ. We will frequently

define free monoid homomorphisms by their action on their domains.

2.3 Space complexity

We give a brief definition of space complexity. We refer the reader to [77] for a

comprehensive introduction to space complexity. We will be considering EDT0L

systems in detail in later chapters, and we refer to [17] for the consideration of space

complexity when constructing EDT0L systems.

9

Chapter 2: Preliminaries

Definition 2.3.1. Let f : Z≥0 → Z≥0 be a function. We say that an algorithm runs

in NSPACE(f) if it can be performed by a non-deterministic Turing machine with

the following:

1. A read-only input tape;

2. A write-only output tape;

3. A read-write work tape such that now computation path in the Turing machine

uses more than O(nf) units of the work tape, for an input of length n.

An algorithm is said to run in non-deterministic linear (resp. quadratic, resp. poly-

nomial) space if it runs in NSPACE(f), for some linear (resp. quadratic, resp. poly-

nomial) function f : Z≥0 → Z≥0.

Remark 2.3.2. We will often say that grammars or automata that define languages

are constructible in NSPACE(f). This means that there is an algorithm that runs in

NSPACE(f), which takes an input that will be specified (which is sometimes other

grammars or automata), and outputs the desired grammar or automaton.

2.4 Regular languages

The Chomsky hierarchy of languages is the ascending sequence (with respect to

containment) which comprises the classes of regular, context-free, context-sensitive,

recursive and recursively enumerable languages. Recursively enumerable languages

are those accepted by a Turing machine, and recursive languages are those that are

both recursively enumerable, and have a recursively enumerable complement. We

define context-free languages in the appendix (A.1), and refer the reader to [58] for

a comprehensive introduction to the languages in the Chomsky hierarchy.

The most restrictive class of languages in Chomsky’s hierarchy is the class of regular

languages. These have been widely studied and used in a variety of fields across

mathematics and computer science. We begin with the definition of a finite-state

automaton. We refer the reader to [56] for a more thorough introduction to regular

languages.

10

Chapter 2: Preliminaries

Figure 2.1: Finite state automaton for for {ambcn | m, n ∈ Z≥0}, with start state
q0 and accept state q0.

q0 q1a
b

c

Definition 2.4.1. A finite-state automaton is a tuple A = (Σ, Γ, q0, F), where

1. Σ is an alphabet;

2. Γ is a finite edge-labelled directed graph with labels from Σ ∪ {ε};

3. q0 ∈ V (Γ) is called the start state;

4. F ⊆ V (Γ) is called the set of accept states.

We call vertices in Γ states.

A word w ∈ Σ∗ is accepted by A if there is a path in Γ from q0 to a state in F ,

where w is the word obtained by concatenating the labels of the edges in the path.

The language accepted by A is the set of all words accepted by A.

A language is called regular if it accepted by a finite-state automaton.

Example 2.4.2. We will show that the language L = {ambcn | m, n ∈ Z≥0} is

regular over {a, b, c}. The finite-state automaton defined in Figure 2.1 accepts a

language that is contained in L, as reading any word in the automaton results in

reading any number of as, followed by one b, followed by any number of cs. Moreover,

if w = ambcn ∈ L, then we can use this automaton to accept w by traversing the

edge labelled by a at q0 m times, then reading one b to transfer to q1, then traversing

the c edge n times, before being accepted. Thus this automaton accepts L, and L

is a regular language.

We consider the closure properties that regular languages satisfy. A full abstract

family of languages is a class of languages that is closed under finite unions, finite

intersections, Kleene star closure, images under free monoid homomorphisms and

pre-images under free monoid homomorphisms. Regular languages form the smallest

11

Chapter 2: Preliminaries

full abstract family of languages. For the space complexity claims, we refer the reader

to Remark 2.3.2 for the definition of constructible.

Lemma 2.4.3. Let L and M be regular languages over alphabets ΣL and ΣM , that

are constructible in NSPACE(f) for some f : Z≥0 → Z≥0. Let φ : Σ∗L → Σ∗M be a free

monoid homomorphism that is constructible in constant space. Then the following

languages are regular, and constructible in NSPACE(f):

1. L ∪M (union);

2. L ∩M (intersection);

3. LM (concatenation);

4. L∗ (Kleene star closure);

5. Lφ (homomorphism);

6. Lφ−1 (inverse homomorphism).

Proof Let AL = (Σ, ΓL, qL, FL) and AM = (Σ, ΓM , qM , FM) be finite state au-

tomata accepting L and M , respectively, that are both constructible in NSPACE(f).

1. The finite state automaton that accepts L∪M is obtained by taking the union

ΓL∪ΓM and adding an additional state, q0. We attach an ε-labelled edge from

q0 to qL and qM , and then set q0 to be the start state. The accept states will be

FL ∪ FM . Printing this can be done using the memory required to print both

of AL and AM , plus a constant, and thus it is constructible in NSPACE(f).

2. We can take AL × AM , to be our finite state automaton for L ∩M , where

the start state is (qL, qM), and the set of accept states is FL × FM . To write

this down, we proceed with the construction of AL, but whenever we would

normally output a state q, we instead output {q} × AM , and whenever we

would add an edge between states q1 and q2, we instead add all edges between

{q1} × AM and {q2} × AM , by going through the construction of AM . To

do this, we never need to store more than the information required to write

down both AM and AL plus a constant, and thus this can be completed in

NSPACE(f).

3. We construct a new automaton whose directed graph is ΓL ∪ΓM , and with an

ε-labelled edge added from each accept state of AL to qM . We then set the

12

Chapter 2: Preliminaries

start state to be qL and the set of accept states to be FM . By construction,

the set of words accepted by this finite-state automaton will trace an accepted

path in ΓL, and then an accepted path in ΓM , and thus will be LM . We can use

the same argument from (1) to show that this is constructible in NSPACE(f).

4. To create a finite-state automaton accepting L∗, we modify AL by adding

an ε-labelled edge from every accept state to the start state. We only need

the information to construct AL to construct this, and so it can be done in

NSPACE(f).

5. We can do this by constructing AL, except whenever we would output an

edge labelled with a, we instead output a path labelled with aφ. As we only

need the information necessary to construct A and φ, this is constructible in

NSPACE(f).

6. We adapt the construction in [19], Proposition 3.3. First let Σ̄L = {ā | a ∈ ΣL}

be a copy of ΣL, disjoint with ΣM , and let L̄ be the language obtained from

L by replacing every occurrence of a ∈ ΣL with ā. Now let

K = {y0x1y1 · · ·xnyn | n ∈ Z>0, x1 · · ·xn ∈ L̄, y1, . . . , yn ∈ Σ∗M}.

We can construct a finite state automaton accepting K in NSPACE(f), by

constructing AL, but replacing each occurrence of a ∈ ΣL with ā, and then for

each a ∈ ΣM , adding a loop in each vertex labelled with a ∈ Σ. Now consider

the regular language

S = {(y1φ)ȳ1(y2φ)ȳ2 · · · (ynφ)ȳn | n ∈ Z>0, y1, . . . , yn ∈ Σ∗L}.

Note that the size of S is constant; it depends only on φ. Let τ : (ΣM ∪Σ̄L)∗ →

(ΣM)∗ be the free monoid homomorphism defined by aτ = a if a ∈ ΣM , and

āτ = ε, if ā ∈ Σ̄L. By construction, Lφ−1 = (K ∩ S)τ . Using (2) and (3), it

follows that Lφ−1 is constructible in NSPACE(f).

�

An alternative method of defining regular languages is through the use of rational

expressions. These are discussed in detail in [58], Chapter 2. They are built by

13

Chapter 2: Preliminaries

writing regular languages using finite languages and the following operations: finite

union, concatenation and Kleene star closure. Lemma 2.4.3 shows that any language

defined this way will indeed be regular. It still remains to show that they define all

regular languages. We begin with the definition.

Definition 2.4.4. We define a rational expression (sometimes called a regular ex-

pression) inductively as follows.

1. Finite languages are rational expressions, which we denote {w1, . . . , wn};

2. If R and S are rational expressions, then RS is. This defines the concatenation

of the languages that R and S define;

3. If R and S are rational expressions, then R ∪ S is a regular expression. This

defines the union of the languages that R and S define;

4. If R is a rational expression, then R∗ is. This defines the Kleene star closure

of the language that R defines;

5. If R is a rational expression, then (R) is. This defines the same language as R.

We use parentheses to give the order in which operations are to be performed.

When no parentheses are used, Kleene star operators are applied first, then con-

catenation, then union.

We give some examples of rational expressions and the languages they define.

Example 2.4.5.

1. As finite languages {a, b}, {b, cd} and {d} are rational expressions;

2. Since {a, b} is a rational expression, {a, b}∗ is, which defined the Kleene star

closure of {a, b}; that is, the set of all words over {a, b};

3. As the concatenation of two rational expressions {a, b}∗{d} is a rational ex-

pression. It defines the language

{wd | w ∈ {a, b}∗};

4. As the union of two rational expressions ({a, b}∗{d}) ∪ {b, cd}∗ is a rational

14

Chapter 2: Preliminaries

expression. It defines the language

{wd | w ∈ {a, b}∗} ∪ {b, cd}∗.

The class of languages accepted by rational expressions is the class of regular lan-

guages. We refer the reader to [58] for the proof.

Theorem 2.4.6 (Kleene’s Theorem, [58], Theorem 2.3 and Theorem 2.4). A lan-

guage is regular if and only if it is defined by a rational expression.

2.5 Rational and recognisable subsets of monoids

We cover here the basic definitions of rational and recognisable subsets of monoids.

Both types are used as constraints for variables in equations in groups, and we will

use recognisable constraints to show that the class of groups where solutions to

systems of equations form EDT0L languages is closed under passing to finite index

subgroups. Rational subsets of monoids are required in the definition of an EDT0L

language.

Definition 2.5.1. Let S be a monoid, and Σ be a (monoid) generating set for S.

Define π : Σ∗ → S to be the natural homomorphism. We say a subset A ⊆ S is

1. recognisable if Aπ−1 is a regular language over Σ;

2. rational if there is a regular language L over Σ, such that A = Lπ.

Remark 2.5.2. Recognisable sets are rational.

In a free monoid, rational sets are recognisable as well; this is part of Kleene’s

theorem that we omitted earlier. However, this is not true in general for arbitrary

monoids.

We give a few examples of recognisable and rational sets.

Example 2.5.3. Finite subsets of any monoid are rational. Finite subsets of a

group G are recognisable if and only if G is finite [53]. Finite index subgroups of

any group are recognisable, and hence rational.

15

Chapter 2: Preliminaries

The following result of Grunschlag relates the rational subsets of a finite index

subgroup of a group G to the rational subsets of G itself.

Lemma 2.5.4 ([52], Corollary 2.3.8). Let G be a group with finite generating set

Σ, and H be a finite index subgroup of G. Let ∆ be a finite generating set for H,

and T be a right transversal for H in G. For each rational subset R ⊆ G, such that

R ⊆ Ht for some t ∈ T , there exists a (computable) rational subset S ⊆ H (with

respect to ∆), such that R = St.

Herbst and Thomas proved that recognisable sets in a group G are always finite

unions of cosets of a finite index normal subgroup of G [53]. This can be used to

prove many facts about recognisable sets, including the following lemma.

Lemma 2.5.5. Let G be a finitely generated group with a finite index subgroup H,

and let S ⊆ H. Then S is recognisable in G if and only if S is recognisable in H.

2.6 Group equations and languages

2.6.1 Group equations

We define here a system of equations within a group, and certain generalisations

including twisting and constraints. Twisted equations prove useful in showing that

systems of equations with rational constraints in finite extensions of a group G have

EDT0L solutions, if systems of equations in G have EDT0L solutions.

Definition 2.6.1. Let G be a group, and X be a finite set of variables. A finite

system of equations in G with variables X is a finite subset E of G ∗ FX , where FX

is the free group on a finite set X . If E = {w1, . . . , wn}, we view E as a system

by writing w1 = w2 = · · · = wn = 1. A solution to a system w1 = · · · = wn = 1

is a homomorphism φ : FX → G, and such that w1φ̄ = · · · = wnφ̄ = 1G, where φ̄ is

the extension of φ to a homomorphism from G ∗ FX → G, defined by gφ̄ = g for all

g ∈ G.

16

Chapter 2: Preliminaries

Let Ω ≤ Aut(G). A finite system of Ω-twisted equations in G with variables X is a

finite subset E of the monoid (G∪FX×Ω)∗, and is again denoted w1 = · · · = wn = 1.

Define the function

p : G× Aut(G)→ G

(g, ψ) 7→ gψ.

If φ : FX → G is a homomorphism, let φ̄ denote the (monoid) homomorphism from

(G ∪ FX × Ω)∗ to (G × Ω)∗, defined by (h, ψ)φ̄ = (hφ, ψ) for (h, ψ) ∈ FX × Ω

and gφ̄ = g for all g ∈ G. A solution is a homomorphism φ : FX → G, such that

w1φ̄p = · · · = wnφ̄p = 1G. When Ω = Aut(G), we omit the reference to Ω, and call

such a system a finite system of twisted equations.

For the purposes of decidability in finitely generated groups, the elements of G

will be represented as words over a finite generating set, and in twisted equations,

automorphisms will be represented by their action on the generators.

A finite system of (twisted) equations with rational (recognisable) constraints E in

a group G is a finite system of (twisted) equations F with variables X1, . . . , Xn,

together with a tuple of rational (recognisable) subsets R1, . . . , Rn of G. A solution

to E is a solution φ to F , such that Xiφ ∈ Ri for all i.

Remark 2.6.2. A solution to an equation with variables X1, . . . , Xn will usually be

represented as a tuple (x1, . . . , xn) of group elements, rather than a homomorphism.

We can obtain the homomorphism from the tuple by defining Xi 7→ xi for each i.

Example 2.6.3. Equations in Z are linear equations in integers, and elementary

linear algebra can be used to determine satisfiability, and also describe solutions.

For example, if we write a as the free generator for Z, then

a3Xa−5Y −1a7Y a−1X = 1 (2.1)

17

Chapter 2: Preliminaries

is an equation in Z. We can rewrite (2.1) using additive notation as

3 +X − 5− Y + 7 + Y − 1 +X = 0. (2.2)

Using the fact that Z is abelian, we can manipulate (2.2) to obtain the following

equation with the same set of solutions:

2X + 4 = 0.

Thus our set of solutions (when written as tuples) will be

{(2, y) | y ∈ Z}.

Example 2.6.4. The conjugacy problem in any group can be viewed as an equation

X−1gX = h, where g and h are group elements, and X is a variable. For example,

in the free group F (a, b), one could consider the equation X−1abX = ba. The set

of solutions is {(ab)nb−1 | n ∈ Z}.

The twisted conjugacy problem can similarly be viewed as the equation X−1gX =

hΦ, for some automorphism Φ.

Example 2.6.5. Let Φ =

 0 1

−1 0

 ∈ GL2(Z). Consider the twisted equation in

Z2, with the variables X and Y:

(X)Φ = Y.

This is just the automorphism problem in Z2, which can be solved using elementary

linear algebra. In the free group F (a, b), an example of a twisted equation would

be X(Y ψ)aY = bX−1, for some ψ ∈ Aut(F (a, b)) although computing solutions to

this is more difficult.

18

Chapter 2: Preliminaries

2.6.2 Solution languages

We now explain how we represent solution sets as languages. We start by defining

a normal form.

Definition 2.6.6. Let G be a group, and Σ be a finite generating set for G. A

normal form for G, with respect to Σ, is a function η : G → (Σ±)∗ that fixes Σ±,

and such that gη represents g for all g ∈ G.

A normal form η is called

1. regular if im η is a regular language over Σ±;

2. geodesic if im η comprises only geodesic words in G, with respect to Σ; that is

for all g ∈ G, |gη| = |g|(G,Σ);

3. quasi-geodesic if there exists λ > 0 such that |gη| ≤ λ|g|(G,Σ) +λ for all g ∈ G.

Note that we are insisting our normal forms produce a unique representative for

each element, since functions can only map elements to one image.

We are now in a position to represent solutions as languages, with respect to a given

normal form.

Definition 2.6.7. Let G be a group with a finite inverse closed generating set Σ,

and let η : G → (Σ±)∗ be a normal form for G with respect to Σ. Let E be a

system of equations in G with a set S of solutions. The solution language to E is

the language

{(g1η)# · · ·#(gnη) | (g1, . . . , gn) ∈ S}

over Σ± t {#}.

Remark 2.6.8. We now introduce space complexity to solution languages. We first

need to define the ‘size’ of a system of equations, in order to measure our input.

The definition of size can vary, as specific groups can have different ways of writing

equations. For example, in [47], equations in virtually abelian groups were stored

as tuples of integers, as this compressed the size of the equations, whilst storing

all of the necessary information. This approach has not always been used in other

19

Chapter 2: Preliminaries

cases when compression was possible. When we deal with virtually abelian groups

on their own, we will use this definition when referring to equations.

When discussing equations in constructions based on other groups (such as direct

products, finite index subgroups, wreath products), we will ‘inherit’ the input defi-

nition from the groups they are defined from. If these vary, we will use the general

definition, which is less efficient than the specific virtually abelian case, and as a

result, will still yield (at least) the same results. The general definition of equation

size will also be used when talking about groups that are virtually direct products

of hyperbolic groups.

We start with the general definition of equation length.

Definition 2.6.9 (General case). Let G be a group, and w = 1 be an equation in

G. Recall that w ∈ FV ∗G, for some finite set V . Fix a generating set Σ for G. We

define the length of w = 1 to be the length of the group element w ∈ FV ∗ G, with

respect to the generating set G ∪ V .

Let E be a finite system of equations in G. The length of E is the sum of the lengths

of all equations in E .

Before we define virtually abelian equation length, we must first consider the free

abelian case. The compression is possible because we can store an integer n with

log n+ c bits, for some constant c. This is covered in greater detail in [47], Remark

3.6 and Remark 3.10.

Definition 2.6.10 (Virtually abelian case). Let a1, . . . , ak denote the standard

generators of Zk.

1. Let w = 1 be an equation in Zk with a set {X1, . . . , Xn} of variables. By

reordering a given expression for w, we can assume w = 1 is in the form

Xb1
1 · · ·Xbn

n a
c1
1 · · · a

ck
k = 1,

where b1, . . . , bn, c1, . . . , ck ∈ Z. We can then define the free abelian length

20

Chapter 2: Preliminaries

of w = 1 to be
n∑
i=1

log |bi|+
k∑
j=1

log |cj|+ Ckn.

2. Suppose now u = 1 is a twisted equation in Zk. By rearranging u, we can

assume it is of the form

(X1B1) · · · (XnBn)ac11 · · · a
ck
k = 1,

where each Br = [brij] is a k× k integer-valued matrix (not-necessarily invert-

ible). These are described in more detail in the proof of Lemma 3.3 in [47].

The free abelian length of w = 1 is defined to be

k∑
i,j=1

log |brij|+ C ′k2.

where C ′ is a constant.

From [47], any equation u = 1 in a virtually abelian group induces a twisted

equation ū = 1 in a free abelian group, which is unique up to the choice of

transversal. We fix a choice of transversal, then define the virtually abelian

length of u = 1 to be the free abelian length of ū = 1.

Let E be a finite system of equations in a virtually abelian group. The virtually

abelian length of E is the sum of the virtually abelian lengths of all equations

in E . Free abelian length of a system of equations is defined analogously.

We now use these lengths as our input size. Unless we explicitly state that we are

using virtually or free abelian equation length, we will assume we are using the

general version of equation length.

Definition 2.6.11. Let C be a class of languages, and fix a type of machine or

grammar that constructs languages in C. Let f : Z≥0 → Z≥0. Let G be a group

with a finite generating set Σ, and let η be a normal form for (G, Σ). We say that

solutions to systems of equations in G, with respect to η, are C in NSPACE(f) if

1. The solution languages to systems of equations in G are C with respect to η;

2. Given a system of equations E in G, a machine or grammar accepting the

21

Chapter 2: Preliminaries

solution language can be constructed in NSPACE(f), with E as the input.

Remark 2.6.12. Since the main class of languages we will be using to describe

solutions is the class of EDT0L languages, we will usually say EDT0L in NSPACE(f),

and the type of grammar we refer to when we say this is the EDT0L system. We

use EDT0L, as it is (in most studied cases) the smallest class that works. We have

yet to find an example where solution languages can be shown not to be EDT0L (at

least in a case when the satisfiability of equations is decidable).

The next well-studied classes of languages containing indexed is context-sensitive.

This is too general for results to be particularly interesting, as any group with

a context-sensitive word problem will have a context-sensitive solution language to

any system of equations. A language is context-sensitive if it is accepted by a Turing

machine with a linearly bounded work tape (in terms of the input). Thus any system

of equations could be copied onto the tape (leaving space for the variables), which

uses a linear amount of space. We can then input our tuple into the Turing machine

by writing each word into the gaps we left for tuples, and then solve the word

problem. After this we intersect with our (context-sensitive) normal form, to obtain

the desired solution language. The class of groups with a context-sensitive word

problem is fairly wide; Shapiro showed that it contains all subgroups of automatic

groups [90].

22

Chapter 3

EDT0L languages

3.1 Introduction

In the 1960s, Lindenmayer introduced a collection of classes of languages called L-

systems. Originally used to study growth of organisms, L-systems saw significant

interest in the 1970s and early 1980s, and Lindenmayer’s original classes inspired

the definitions of many other L-systems, including Rozenberg’s EDT0L and ET0L

languages [85]. These classes have recently had a wide variety of applications in and

around group theory ([20], [14], [17], [19], [47], [32], [65], [11]).

Figure 1.1 gives the relationship between EDT0L, ET0L, regular, context-free and

indexed languages (the definitions of context-free, indexed and ET0L languages are

not used, but are included in the appendix for the sake of completeness). The facts

that regular languages are EDT0L and EDT0L languages are ET0L are immediate

from the definitions. Example 3.2.3 gives an example of an EDT0L language that is

not context-free. The existence of context-free languages that are not EDT0L was

first shown by Ehrenfeucht and Rozenberg [41]. The fact that ET0L languages are

indexed is considered in Section B.8, and Ehrenfeucht, Rozenberg and Skyum first

showed the existence of an indexed language that is not ET0L [42].

We give an introduction to the class of EDT0L languages and include proofs of

some results. Whilst this section is far from an exhaustive survey of these classes of

23

Chapter 3: EDT0L languages

languages, we have included a variety of results, both in this chapter or Appendix

B.

We begin with the definition of EDT0L languages in Section 3.2. Section 3.3 cov-

ers common alternative definitions and basic closure properties of these classes of

languages. Appendix B contains more information on EDT0L languages and the

definition of ET0L languages.

3.2 EDT0L languages

We start with the definition of an EDT0L language. Whilst the definition is fairly

technical, EDT0L languages are very natural to work with, and a greater under-

standing of EDT0L languages can be gleaned from an example, such as Example

3.2.3. The original definition is due to Rozenberg [85], however, the use of the ratio-

nal control, which often makes working with EDT0L languages much easier, is due

to Asveld [6].

Definition 3.2.1. An EDT0L system is a tuple H = (Σ, C, ω, R), where

1. Σ is an alphabet, called the (terminal) alphabet ;

2. C is a finite superset of Σ, called the extended alphabet of H;

3. ω ∈ C∗ is called the start word ;

4. R is a regular (as a language) subset of End(C∗), called the rational control

of H.

The language accepted by H is

L(H) = {ωφ | φ ∈ R} ∩ Σ∗.

A language accepted by an EDT0L system is called an EDT0L language.

The alphabet of the rational control is a minimal set B of labels on a finite-state

automaton accepting R (with respect to cardinality). We say that H is an EPDT0L

system if cφ 6= ε for all c ∈ C and φ ∈ B.

24

Chapter 3: EDT0L languages

There are a number of different definitions of an EDT0L system, that all generate

the same class of languages. In [17] and [20], the definition is the same as given

here, except for the insistence that the start word is a single letter. In [86], and

many earlier publications, the definition is what is given above, except they only

allow rational controls of the form ∆∗, for some finite set of endomorphisms ∆. This

definition is again equivalent to the definition we have given [7], but proves to be

cumbersome when proving languages are EDT0L. We show the equivalence of these

definitions in Section 3.3.

To streamline the definition of specific EDT0L systems, we introduce the following

notation convention for specifying endomorphisms of a given free monoid.

Notation 3.2.2. When defining endomorphisms of C∗ for some extended alphabet

C, within the definition of an EDT0L system, we will usually define each endomor-

phism by where it maps each letter in C. If any letter is not assigned an image

within the definition of an endomorphism, we will say that it is fixed by that endo-

morphism.

The following is a standard example of an EDT0L language that is not context-free.

Example 3.2.3. The language L = {an2 | n ∈ Z>0} is an EDT0L language over the

alphabet {a}. This can be seen by considering C = {⊥, s, t, u, a} as the extended

alphabet of an EDT0L system accepting L, with ⊥ as the start word, and using the

finite state automaton from Figure 3.1 to define the rational control. Note that the

rational control can also be written as ϕ⊥(ϕ1ϕ2)∗ϕ3.

Since we devote a lot of time to EDT0L solution languages in future chapters, we

give an example of an equation in a group with an EDT0L language of solutions.

Example 3.2.4. Consider the equation XY −1 = 1 in Z with the presentation 〈a |〉.

The solution language with respect to the standard normal form is

L = {an#an | n ∈ Z},

over the alphabet {a, a−1, #}. The language L is EDT0L; our system will have

the extended alphabet {⊥, #, a, a−1} and rational control defined by Figure 3.2.

25

Chapter 3: EDT0L languages

Figure 3.1: Rational control for L = {an2 | n ∈ Z>0}, with start state q0 and accept
state q3.

q0

q1 q2

q3

ϕ⊥ : ⊥7→ tsa

ϕ1 : s 7→ su

ϕ2 : t 7→ at
u 7→ ua2

ϕ3 : s, t, u 7→ ε

Note that the rational control can also be expressed using the rational expression

{ϕ∗−, ϕ∗+}φ.

This language is not regular, which can be shown using the pumping lemma ([56],

Theorem 2.5.17)

3.3 Alternative definitions and closure properties

We now consider some of the basic properties of EDT0L languages. We start with a

theorem that gives a number of restrictions that can be put on EDT0L (and ET0L)

systems, without affecting the class of languages they define. Frequently, EDT0L

and ET0L systems are defined with these restrictions in place. In much of the

literature during the 1970s, the restriction (3) is used as part of the definition. We

refer the reader to Section B.1 for the definition of E(P)T0L languages.

Theorem 3.3.1. The class of languages accepted by E(P)(D)T0L systems is un-

changed if one assumes:

26

Chapter 3: EDT0L languages

Figure 3.2: Rational control for L = {an#an | n ∈ Z} with start state q0, and accept
state q3.

q0

q1q2

q3

idid

ϕ+ : ⊥7→⊥ aϕ− : ⊥7→⊥ a−1

φ : ⊥7→ εφ : ⊥7→ ε

1. The start word is a single letter;

2. Every table in the alphabet over which the rational control is a regular language

fixes every letter in the terminal alphabet.

3. The rational control is of the form B∗ for some finite set B of endomorphisms;

4. All of the above.

In addition, one can switch between definitions, without affecting the space complex-

ity of the systems.

Proof We have that if all E(P)(D)T0L languages are accepted by E(P)(D)T0L

systems satisfying (4), it follows that all E(P)(D)T0L languages are accepted by

E(P)(D)T0L systems satisfying (1), (2) and (3). Moreover, as they are still E(D)T0L

systems, the languages accepted by systems satisfying (1), (2) and (3) will still be

E(D)T0L. Thus it suffices to show that every E(P)(D)T0L language is accepted by

a system satisfying (4).

Let L be a language accepted by an E(P)(D)T0L system H = (Σ, C, ω, R).

Let ⊥/∈ C, and extend each table φ over C to a table φ̄ over C ∪ {⊥} by setting

⊥ φ̄ = {⊥}. Define a table (which induces an endomorphism) ψ over C ∪ {⊥} by

⊥ ψ = {ω}, and cψ = {c} for all c ∈ C. We have that (Σ, C ∪ {⊥}, ⊥, ψR)

27

Chapter 3: EDT0L languages

accepts L.

For the space complexity, first note that ⊥ can be written down using constant

space. As C is constructible in NSPACE(f), we have that C ∪ {⊥} is constructible

in constant space. To record ψ we need only the information required to record

C ∪ {⊥} and then ω, all of which are constructible in NSPACE(f). It follows that

ψR is constructible in NSPACE(f), and thus the E(P)(D)T0L system is.

By redefining C to be C ∪ {⊥} and R to be Rψ, we can now assume that H is of

the form (Σ, C, ⊥, R).

Let B be the finite set of tables that is the alphabet of R. We will create a new

E(P)(D)T0L system from H so that every table in B fixes every letter in the target

alphabet. Let C̄ = {c̄ | c ∈ C} be a disjoint copy of C. For each φ ∈ B define the

table φ̄ over C̄ ∪ Σ by

cφ̄ =

 dφ c = d̄ ∈ C̄

{c} c ∈ Σ.

Also define θ by

cθ =

 {c} c /∈ Σ̄

{b} c = b̄ ∈ Σ̄.

Let R̄ be the rational subset of (End(C̄ ∪ Σ)∗) obtained by replacing each φ in B

within a finite-state automaton for R with its barred version. By construction, the

E(P)(D)T0L system (Σ, C̄ ∪ Σ, ω̄, R̄θ) accepts L.

We now show that this E(P)(D)T0L system is constructible in NSPACE(f). As C

and Σ are constructible in NSPACE(f), it follows that C̄ ∪ Σ is also. Constructing

a barred version of ω can be done in the same space required to construct ω. Since

each barred version of a table in R requires the same space to construct, it follows

that R̄, and hence R̄θ can be constructed in NSPACE(f).

We can now assume that H satisfies (1) and (2), and we will use this to define an

E(P)(D)T0L system that satisfies (1), (2) and (3). Let A = (Q, Σ, δ, q0, F) be a

finite state automaton for R. Let Cind = {cq | c ∈ C, q ∈ Q} ∪ Σ t {κ}, where κ

is a symbol not already used, and for each c ∈ C, cq is a distinct new letter for all

28

Chapter 3: EDT0L languages

q ∈ Q. We will use κ as a ‘fail symbol’. For each transition in A from a state p1 to

a state p2, labelled with φ ∈ B, define a table φ̂ over Cind by

cqφ̂ =

{dp2 | d ∈ cφ} p1 = q

{cq} p1 6= q

{κ} cq = κ.

Let Bind = {φ̂ | φ ∈ B}, and Σind = {aq | a ∈ Σ, q ∈ F}. By construction, the

E(P)(D)T0L system (Σind, Cind, ⊥q0 , B∗ind) accepts the language

M = {aq1 · · · aqn | ai ∈ Σ, q ∈ F, a1 · · · an ∈ L}.

Now define θ ∈ End(C∗ind) by

cqθ =

 c {c} ∈ Σ, q ∈ F

{κ} otherwise.

Thus L is accepted by the E(P)(D)T0L system (Σ, Cind, ⊥q0 , (Bind ∪ {θ})∗). �

The following theorem shows that even if EDT0L languages do not form a full

abstract family of languages like regular, context-free and ET0L languages, they are

closed under most of the standard operations that are frequently used to manipulate

languages.

Theorem 3.3.2 ([86], Theorem V.1.7 and Exercise IV.3.2; [19], Proposition 3.3).

The class of EDT0L languages is closed under the following operations:

1. Finite unions;

2. Intersection with regular languages;

3. Concatenation;

4. Kleene star closure;

5. Image under free monoid homomorphisms.

The class of ET0L languages is closed under the above operations, together with:

6 Pre-image under free monoid homomorphisms.

29

Chapter 3: EDT0L languages

Applying any of the operations will not affect the space complexity that systems for

the languages involved can be constructed in, assuming that the regular language in

(3), and the homomorphisms in (5) and (6) are constructible in constant space.

Proof Let f : Z≥0 → Z≥0.

1. Let L andM be languages accepted by the E(D)T0L systems (ΣL, CL, ωL, RL)

and (ΣM , CM , ωM , RM), which are constructible in NSPACE(f). Fix a sym-

bol ⊥/∈ CL ∪ CM . Let Σ = ΣL ∪ ΣM (this union need not be disjoint) and

C = CL∪CM ∪{⊥}. Let φL and φM be tables over C defined by ⊥ φL = {ωL}

and ⊥ φM = {ωM}, which fix all other letters in C. Extend the tables in the

alphabets of RL and RM to C∗ by fixing all letters in C\CL and C\CM , re-

spectively. Let R = (φLRL) ∪ (φMRM). Note R is rational. By construction,

(Σ, C, ⊥, R) accepts L ∪M , and so L ∪M is E(D)T0L.

As we can write down CL and CM in NSPACE(f), we can also write down

C = CL∪CM ∪{⊥} in NSPACE(f). The start word is a single letter, and thus

can be constructed in constant space. To show the rational control can be

constructed in NSPACE(f), it is sufficient to show that the tables φL and φM

can be, as RL and RM are constructible in NSPACE(f). However, to record

these tables, we need only the information to construct ωL and ωM , both of

which are constructible in NSPACE(f).

2. Let A be a finite-state automaton with a single accept state qt, accepting a

regular language L over Σ. Let Q be the set of states of A, δ ⊆ (Q× Σ)×Q

be the transition function and q0 be the start state. Let (Σ, C, ⊥, R) be

an E(D)T0L system accepting a language M with a single-letter start word,

that is constructible in NSPACE(f). We can assume the start word is a single

letter by Theorem 3.3.1. For each c ∈ C and each p, q ∈ Q, define a distinct

symbol cp,q /∈ C. Let κ be a symbol not already used, which we will use as a

‘fail symbol’ Let D = {cp,q | p, q ∈ Q, c ∈ C} ∪ {κ} ∪ Σ. For each letter φ in

the alphabet of the rational control R, define the finite set Φφ of tables over

30

Chapter 3: EDT0L languages

D to be the set of all θφ,p1,...,pk−1
defined as follows:

θφ,p1,...,pk−1
: cp,q 7→ {dp,p11 dp1,p22 · · · dpk−1,q

k | d1 · · · dk ∈ cφ}

for all c ∈ C, p, q, p1, . . . , pk−1 ∈ Q.

Define a new rational subset R̄ ⊆ End(D∗) by replacing each occurrence of

each letter φ in a rational expression for R with Φφ. Let

ψ : ap,q 7→

 {a} ((p, a), q) ∈ δ

{κ} ((p, a), q) /∈ δ
for all a ∈ Σ.

By construction, the E(D)T0L system H = (Σ, D, ⊥q0,qt , R̄ψ) accepts L∩M .

It remains to show that H is constructible in NSPACE(f). As we can choose A

such that it is constructible in constant space, doing so allows us to construct

Cind in NSPACE(f). Note that we can construct each Φφ using the same

information required to construct φ, and thus R̄ is constructible in NSPACE(f).

Finally, note that ψ can be written down in constant space. We can conclude

that H is constructible in NSPACE(f).

3. Let L and M be languages accepted by E(D)T0L systems (ΣL, CL, ωL, RL)

and (ΣM , CM , ωM , RM) that are constructible in NSPACE(f). Let K = {uv |

u ∈ L, v ∈M} be the concatenation. By Theorem 3.3.1, we can assume that

the tables in the alphabets of RL and RM fix ΣL and ΣM , respectively. Let

Σ = ΣL ∪ ΣM , and C = (CL\ΣL) t (CM\ΣM) t Σ. As in (1), extend tables

in the alphabets of RL and RM to become tables over C by fixing letters in

C\CM and C\CL, respectively. We can now define a new E(D)T0L system

H = (Σ, C, ωLωM , RL ∪RM) which accepts K.

For the space complexity, as ωL and ωM can both be written down in NSPACE(f),

it follows that ωLωM can. Similarly, as CL, CM , Σ, RL and RM are all con-

structible in NSPACE(f), it follows that the same holds for C = (CL\ΣL) t

(CM\ΣM) t Σ and RL ∪RM .

4. Let L be a language accepted by an E(D)T0L system (Σ, C, ω, R) that is

constructible in NSPACE(f). We will use Theorem 3.3.1 to assume tables in

R fix elements of Σ. Let ⊥/∈ C. Define tables φ and ψ over C ∪ {⊥} by

31

Chapter 3: EDT0L languages

⊥ φ = {ω ⊥} and ⊥ ψ = {ε}. For each take θ ∈ R, define θ̄ by cθ̄ = cθ if

c ∈ C, and ⊥ θ = {⊥}. Let R̄ = {θ̄ | θ ∈ R}. It follows that the E(D)T0L

system (Σ, C ∪ {⊥}, ⊥, (φR̄)∗ψ) accepts L∗.

Note that we can write down ⊥ and ψ in constant space. Since C and R are

constructible in NSPACE(f), so are C ∪ {⊥} and (φR̄)∗ψ.

5. Let L be a language accepted by an E(D)T0L system (Σ, C, ω, R) which is

constructible in NSPACE(f), and let φ : Σ∗ → ∆∗ be a monoid homomorphism,

where ∆ is an alphabet. Let φ̄ be the table over C ∪ ∆ induced by the

action of φ on Σ (and assumed to fix all letters in (C ∪∆)\Σ). We have that

(∆, C ∪∆, ω, Rφ̄) accepts Lφ.

Since φ (and hence ∆) are constructible in constant space, and C and R are

constructible in NSPACE(f), we have that C ∪∆ and Rφ̄ are constructible in

NSPACE(f).

6. Let L be a language accepted by an ET0L system (Σ, C, ω, R), constructible

in NSPACE(f), and let φ : ∆∗ → Σ∗ be a homomorphism, where ∆ is an

alphabet. Let ∆̂ = {â | a ∈ ∆} be a copy of ∆ disjoint from C. Consider the

following language over Σ ∪ ∆̂:

K = {y0a1y1 · · · akyk | a1, . . . , ak ∈ Σ, a1 · · · ak ∈ L, y1, . . . , yk ∈ ∆̂∗}.

We will define an ET0L system for L that is constructible in NSPACE(f). Our

extended alphabet will be C ∪ ∆̄. Define the table θ over C ∪ ∆̂ by

cφ =

 {ycz | y, z ∈ ∆̂ ∪ {ε}} c ∈ Σ

{c} c /∈ Σ.

For each ψ ∈ R, let ψ̄ be the table over C ∪ ∆̂ obtained by extending ψ to

fix elements of ∆̂, and let R̄ = {ψ̄ | ψ ∈ R}. Then (Σ ∪ ∆̂, C ∪ ∆̂, ω, R̄θ∗)

is an ET0L system for K. Moreover, as θ is only dependent on ∆ and C, θ

is constructible in NSPACE(f). Thus R̄θ∗ is also constructible in NSPACE(f),

and so the ET0L system for K is.

Now consider the regular language S = {(uφ)û | u ∈ ∆}∗. Note that we

can construct a finite-state automaton accepting {(uφ)û | u ∈ ∆} is constant

32

Chapter 3: EDT0L languages

space, as we only need to remember the information required to construct φ.

Thus a finite-state automaton for S is constructible in constant space. We can

therefore use (2) to show that K ∩ S is accepted by an ET0L system that is

constructible in NSPACE(f).

Consider the monoid homomorphism ξ : (Σ ∪ ∆̂)∗ → Σ defined by

aξ =

 ε a ∈ Σ

b a = b̂ ∈ ∆̂

Then (K ∩ S)ξ = Lφ−1. Moreover, as it is only dependent on Σ and ∆, ξ

is constructible in constant space. Thus by (5), an ET0L system for Lφ−1 is

constructible in NSPACE(f).

�

33

Chapter 4

Equations in virtually abelian

groups

4.1 Introduction

This chapter is based on joint work with Alex Evetts [47], and the author’s paper

[65].

It has long been regarded as ‘folklore’ that it is decidable whether systems of equa-

tions in virtually abelian groups admit solutions, however it is unclear when this was

first proved. In [44] the stronger result that virtually abelian groups have decidable

first order theory is shown. A more direct proof of the solubility of equations in vir-

tually abelian groups can be found in Lemma 5.4 of [26]. In this chapter we study

the properties of solution sets of systems of equations in finitely generated virtually

abelian groups. Such sets are also known as algebraic sets.

Given a choice of finite generating set, and a corresponding normal form, we study

the language of representatives for algebraic sets. These will be called solution

languages (see Definition 4.2.15). In Section 4.3 we show that the solution languages

(with respect to a suitable generating set and normal form) are EDT0L. This will

be a consequence of the stronger result that they are accepted by multivariable

finite-state automata (see Definition 4.2.9):

34

Chapter 4: Equations in virtually abelian groups

Theorem 4.3.16. The solution language to any system of equations with rational

constraints in a virtually abelian group is accepted by a multivariable finite-state

automaton.

Corollary 4.3.17. The solution language to any system of equations with rational

constraints in a virtually abelian group is EDT0L.

We also show that both the multivariable finite-state automata and the EDT0L

systems that accept these solution languages can be constructed in non-deterministic

quadratic space.

It is a standard fact that every regular language has rational growth series. That

is, the generating function which counts the number of words in the language with

increasing length lies in the ring of rational functions Q(z). A result of Chomsky and

Schützenberger [15] asserts that the growth series of every unambiguous context-free

language is algebraic over Q(z). In contrast, there is no reason to expect that those

EDT0L languages which do not fall under these two cases have well-behaved growth

series. Indeed, Corollary 8 of [20] implies that there are EDT0L languages with

transcendental (i.e. non-algebraic) growth series. A priori, the language obtained

in Corollary 4.3.17 is neither regular nor context-free. Nevertheless, we prove that

its growth series is rational.

Proposition 4.3.20. The solution language to any system of equations in a virtu-

ally abelian group has rational growth series.

Algebraic sets in groups can be seen as an analogue of the fundamental notion of

algebraic varieties – the zero-loci of systems of equations. Meuser [73], and later

Denef [29], proved the rationality of the Poincaré series of varieties over the p-adic

integers, which can be thought of as a form of growth series. In Section 4.4 we prove

an analogous result for algebraic sets of virtually abelian groups, using a notion of

growth appropriate to the setting of finitely generated groups, namely word growth.

We will use the notion of a polyhedral set, which has its roots in the model theory

of Presburger (see Section 4.2 for definitions).

35

Chapter 4: Equations in virtually abelian groups

Word growth in finitely generated groups is a much-studied topic. The growth func-

tion counts the number of group elements of length n, with respect to the metric

arising from a choice of finite generating set. The asymptotics of this function are

well understood, but many questions remain about the properties of the correspond-

ing formal power series. For an introduction to the topic, the reader is directed to

Mann’s book [70].

Any subset of a group has a growth function, inherited from the group itself. This

relative growth has been studied in many papers, including [28]. The relative growth

series of any subgroup of a virtually abelian group was shown to be rational in [45].

In Section 4.4 we consider the relative growth of the algebraic sets of a virtually

abelian group, as sets of tuples of group elements (with an appropriate metric).

We show that the growth series of an algebraic set is always a rational function,

regardless of the choice of finite weighted generating set.

Theorem 4.4.3. Let G be a virtually abelian group. Then every algebraic set of G

has rational weighted growth series with respect to any finite generating set.

Moreover, we consider the natural multivariate growth series of the algebraic set,

and demonstrate how recent results of Bishop imply that this series is holonomic (a

class which includes algebraic functions and some transcendental functions).

Corollary 4.4.21. Every algebraic set of a virtually abelian group has holonomic

weighted multivariate growth series.

We note that it may be useful for other purposes to have an explicit description

of the algebraic sets of the groups in question, since this does not appear cleanly

in the proofs. For such a statement, the interested reader is directed to Corollary

4.4.16, where the general structure of algebraic sets is noted, using the terminology

of polyhedral sets.

36

Chapter 4: Equations in virtually abelian groups

4.2 Preliminaries

In this section we lay out the key definitions and basic results that will be required

for the rest of the chapter.

Notation 4.2.1. If w ∈ S∗ is a word in the generators of some group G, we write

w ∈ G for the group element that the word w represents.

4.2.1 Polyhedral sets

Our fundamental tool for proving that languages of representatives have rational

growth series in Proposition 4.3.20 and Section 4.4 will be the theory of polyhedral

sets. These ideas appear in model theory as early as Presburger [78]. Results

regarding rationality can be found in [29], and the ideas also appear in the theory

of Igusa local zeta functions (see [24]). The following definitions and results follow

Benson’s work [8], where it is proved that virtually abelian groups have rational

(standard) growth series. More recently, polyhedral sets have again been used to

prove rationality of various growth series of groups ([35], [45]).

Definition 4.2.2. Let r ∈ Z>0, and let · denote the Euclidean scalar product. Then

we define the following.

1. Any subset of Zr of the form {z ∈ Zr | u · z = a}, {z ∈ Zr | u · z > a}, or

{z ∈ Zr | u · z ≡ a mod b}, for any u ∈ Zr, a ∈ Z, b ∈ Z>0, will be called an

elementary set ;

2. any finite intersection of elementary sets will be called a basic polyhedral set ;

3. any finite union of basic polyhedral sets will be called a polyhedral set.

If P ⊂ Zr is polyhedral and additionally no element contains negative coordinate

entries, we call P a positive polyhedral set.

It is not hard to prove the following closure properties.

Proposition 4.2.3 (Proposition 13.1 and Remark 13.2 of [8]). Let P , Q ⊆ Zr and

R ⊆ Zs be polyhedral sets for some positive integers r and s. Then the following are

37

Chapter 4: Equations in virtually abelian groups

also polyhedral: P ∪Q ⊆ Zr, P ∩Q ⊆ Zr, Zr \ P, P ×R ⊆ Zr+s.

Benson also shows that polyhedral sets behave well under affine transformations, as

follows.

Definition 4.2.4. We call a map A : Zr → Zs an integral affine transformation if

there exists an r × s matrix M with integer entries and some q ∈ Zs such that

pA = pM + q for p ∈ Zr.

Proposition 4.2.5 (Propositions 13.7 and 13.8 of [8]). Let A be an integral affine

transformation. If P ⊆ Zr is a polyhedral set then PA ⊆ Zs is a polyhedral set. If

Q ⊆ Zs is a polyhedral set then the preimage QA−1 ⊆ Zr is a polyhedral set.

We note that projection onto any subset of the coordinates of Zr is an integral affine

transformation.

Notation 4.2.6. We will now introduce weight functions. When talking about

weighted lengths of elements of free abelian or virtually abelian groups, we will use

‖ · ‖ instead of | · |, which will be used for ‘standard’ length of elements.

Let P ⊆ Zr be a polyhedral set. Given some choice of weight function ‖ei‖ ∈ Z>0

for the standard basis vectors {ei}ri=1 of Zr, we assign the weight
∑r

i=1 ai‖ei‖ to the

element (a1, . . . , ar) ∈ P . Define the spherical growth function

σP(n) = #{p ∈ P | ‖p‖ = n},

and the resulting weighted growth series

SP(z) =
∞∑
n=0

σP(n)zn.

Our argument will rely on the following crucial proposition.

Proposition 4.2.7 (Proposition 14.1 of [8], and Lemma 7.5 of [29]). If P is a

positive polyhedral set, then the weighted growth series SP(z) is a rational function

of z.

38

Chapter 4: Equations in virtually abelian groups

We will need the following more general result.

Corollary 4.2.8. Let P ⊂ Zr be any polyhedral set (not necessarily positive). Then

the weighted growth series SP(z) is a rational function of z.

Proof We show that P may be expressed as a disjoint union of polyhedral sets, each

in weight-preserving bijection with a positive polyhedral set. Let Q1 = {z ∈ Zr |

z ·ei ≥ 0, 1 ≤ i ≤ r} =
⋂r
i=1{z ∈ Zr | z ·ei ≥ 0} denote the non-negative orthant of

Zr, and note that it is polyhedral. Let Q2, . . . , Q2r denote the remaining orthants

(in any order) obtained from Q1 by (compositions of) reflections along hyperplanes

perpendicular to the axes and passing through the origin. By Proposition 4.2.5 these

are also polyhedral sets. Let P1 = P ∩ Q1 and for each 2 ≤ j ≤ 2r, inductively

define

Pj =

(
P \

⋃
k<j

Pk

)
∩Qj.

Each Pj is a polyhedral set by Proposition 4.2.3, and we have a disjoint union

P =
⋃2r

j=1Pj. Each Pj is in weight-preserving bijection with a positive polyhedral

set (by compositions of reflections along hyperplanes) and so SPj(z) is rational. The

result follows since SP(z) =
∑2r

j=1 SPj(z). �

4.2.2 Multivariable finite-state automata

Since solutions to equations can be thought of as tuples, one method that can be

used to study the language complexity of sets of solutions is using multivariable

languages, which are sets of tuples of words over an alphabet. We start with the

formal definition.

Definition 4.2.9. Let Σ be an alphabet, and n ∈ Z>0. An n-variable word over Σ

is an element of the Cartesian product (Σ∗)n, and an n-variable language over Σ is

any subset of (Σ∗)n.

We continue with a generalisation of a finite-state automaton to accept n-variable

languages, for some positive integer n: the (asynchronous, non-deterministic) n-

variable finite-state automaton.

39

Chapter 4: Equations in virtually abelian groups

Definition 4.2.10. Let n ∈ Z>0. An n-variable finite-state automaton is a tuple

A = (Σ, Γ, q0, F), where

1. Σ is an alphabet;

2. Γ is a finite edge-labelled graph, where labels are n-variable words in (Σ∗)n,

with at most one non-empty word entry. The vertices of Γ are called states ;

3. q0 ∈ V (Γ) is called the start state;

4. F ⊆ V (Γ) is called the set of accept states.

When tracing a path in Γ, we trace an n-variable word to be the concatenation

of the labels of each edge traversed. Since each edge has at most one non-empty

entry, the word will only get longer in one coordinate at a time. An n-variable word

w ∈ (Σ∗)n is accepted by A if there is a path γ in Γ from q0 to a state in F , such

that the n-variable word obtained by reading the labels in γ is w. The language

accepted by A is the set of all n-variable words accepted by A.

Remark 4.2.11. Languages accepted by n-variable finite-state automata can equiv-

alently be defined as rational subsets of (Σ∗)n: the direct product of the free monoid

with itself n times.

We give an example of a language accepted by a 3-variable finite-state automaton.

In this case, the language represents the set of solutions to a system of equations in

Z.

Example 4.2.12. Let E be the following system of equations in Z (using additive

notation):

X − Y + Z = 1 −Y + Z = 0.

Note that by subtracting the second equation from the first, it is not difficult to show

that the set of solutions to this system is {(1, y, y) | y ∈ Z}. To demonstrate a more

general method we will use later on, we will construct the set of solutions, and show

that L = {(ax, ay, az) | (x, y, z) is a solution to E} is accepted by a 3-variable

finite-state automaton over the alphabet {a, a−1}, using a different method. We

will show

40

Chapter 4: Equations in virtually abelian groups

Figure 4.1: The start state is q(0, 0), and q(1, 0) is the unique accept state.

q(−1, −1)

q(−1, 0)

q(−1, 1)

q(0, −1)

q(0, 0)

q(0, 1)

q(1, −1)

q(1, 0)

q(1, 1)
(a, ε, ε) (a, ε, ε)

(a, ε, ε) (a, ε, ε)

(a, ε, ε) (a, ε, ε)

(ε, a, ε) (ε, a, ε)

(ε, a, ε) (ε, a, ε)

(ε, ε, a) (ε, ε, a)

(ε, ε, a) (ε, ε, a)

1. The language {(ax, ay, az) | (x, y, z) is a solution to E and x, y, z ≥ 0} is

accepted by a 3-variable finite-state automaton;

2. To show L is accepted by a 3-variable finite-state automaton, we take the

finite union across the possible configurations of signs of X, Y and Z and

use the fact that finite unions of languages accepted by 3-variable finite-state

automata are also accepted by 3-variable finite-state automata.

To show (1), consider the 3-variable finite-state automaton in Figure 1. This finite-

state automaton works as follows:

1. Traversing an edge labelled by (a, ε, ε), (ε, a, ε) or (ε, ε, a) corresponds

to increasing x, y or z by 1, respectively. The states q(i, j) correspond to the

value of (x− y + z, −y + z), with the current values of x, y and z.

2. Once we have increased x, y and z to the desired values, if this is a solution

to E , then we must be in the accept state q(1, 0).

3. Note that we cannot increase the xs, ys and zs in any order, otherwise we

would need an unbounded size of FSA. For example, the element (a, al, al) of

L, where l ∈ Z and l > 1 cannot be reached in the above system by traversing

41

Chapter 4: Equations in virtually abelian groups

one (a, ε, ε) edge, then l (ε, a, ε) edges, and then l (ε, ε, a) edges, as after

the l (ε, a, ε) edges we would need a state q(−l+1, −l), which does not lie in

the finite-state automaton. Moreover, we cannot add them to the finite-state

automaton, as there are infinitely many such states. We prove the existence

of an ordering of the edges (up to considering two edges with the same label

equivalent) that works in Lemma 4.3.2. In this specific case, it is not hard to

show that the ordering that starts with (a, ε, ε), followed by l traversals of a

path comprising one (ε, a, ε) edge and one (ε, ε, a) edge, for all l > 0, and

a similar ‘reversed’ order would work if l < 0.

4. Note that not all states may be necessary, but it is simpler to construct them

all.

We now show that the class of languages accepted by multivariable finite state

automata is closed under intersecting in one coordinate with a regular language.

The proof is analogous to the proof that the intersection of two regular languages is

regular.

Lemma 4.2.13. Let n ∈ Z>0 and Σ be an alphabet. Let L be a language accepted by

an n-variable finite-state automaton that is constructible in NSPACE(f), for some

function f : Z≥0 → Z≥0, and let M be a regular language (that is constructible in

constant space). Fix i ∈ {1, . . . , n}. Then

{(w1, . . . , wn) ∈ L | wi ∈M}

is accepted by an n-variable finite-state automaton that is constructible in NSPACE(f).

Proof Let M = (Σ, Λ, p0, E) be a finite-state automaton accepting M that is

constructible in constant space, and A = (Σ, Γ, q0, F) be a multivariable finite-

state automaton accepting L that is constructible in NSPACE(f). Let Λ×Γ denote

the edge-labelled graph obtained as follows:

1. The vertex set is V (Λ)× V (Γ);

2. Edges are labelled using n-variable words over Σ;

3. There is an edge from (x1, y1) to (x2, y2) if and only if there is an edge in Λ

42

Chapter 4: Equations in virtually abelian groups

from x1 to x2, labelled a and an edge in Γ from y1 to y2, labelled with b, such

that the ith coordinate of b is a.

Consider the n-variable finite-state automaton B = (Σ, Λ×Γ, (p0, q0), E×F). By

viewing the path in the second coordinate of the graph Λ×Γ, we can conclude that

every word accepted by B is accepted by A. By looking at the first coordinate, we

have that the ith coordinate of every word accepted by B is a word accepted byM.

Conversely, any such word must always be accepted by B, as it traces these paths

in Γ and Λ.

It remains to show that B is constructible in NSPACE(f). Writing down V (Γ) can

be done in NSPACE(f). Since M is constructible in constant space, we have that

V (Λ)× V (Γ) can be constructed in NSPACE(f). Writing each of edges in Γ can be

done in NSPACE(f). We can thus follow this algorithm, but each time we attempt

to write an edge, we check it against every edge in Λ, which we have stored. As Λ

is constructible in constant space, this can also be done in NSPACE(f). The vertex

(p0, q0) can just be written down, and constructing E × F can also be done in

NSPACE(f), as E is constructible in constant space. �

We will later need the following lemma that allows us to take finite unions of lan-

guages that are accepted by multivariable finite-state automata without changing

the space complexity.

Lemma 4.2.14. Let f : Z≥0 → Z≥0 be a function. A finite union of languages ac-

cepted by multivariable finite-state automata that are all constructible in NSPACE(f)

is also accepted by a multivariable finite-state automaton that is constructible in

NSPACE(f).

Proof The automaton M we use is the automaton obtained by taking the union

of all of the automata of the languages in the union, and collapsing the start states

to a single state, which will be the start state. All accept states will remain accept

states. We can constructM by constructing each of the automata in the union one

at a time, which can be done in NSPACE(f). �

43

Chapter 4: Equations in virtually abelian groups

4.2.3 Multivariable solution languages

We now define an alternative language of solutions to study. We have so far con-

sidered the language of words that comprise the solutions concatenated with one

another, delimited by an additional letter #. We now look at the language of n-

variable words representing solutions.

Definition 4.2.15. Let G be a finitely generated group, with a finite monoid gener-

ating set Σ, and a normal form η : G→ Σ∗. Let E be a system of (twisted) equations

in G, and let n be the number of variables in E . Let V = {X1, . . . , Xn} be the

set of variables, and let S be the set of solutions, which are homomorphisms from

FV ∗G to G.

The multivariable solution language to E with respect to Σ and η, is defined to be

{(X1ψη, X2ψη, . . . , Xnψη) | ψ ∈ S} ⊂ Σ∗ × Σ∗ × · · · × Σ∗.

We now show that a multivariable solution language being accepted by an n-variable

finite-state automaton is sufficient for the corresponding solution language to be

EDT0L.

Lemma 4.2.16. Let L be an n-variable language over an alphabet Σ (where n ∈

Z>0), that is accepted by an n-variable finite-state automaton, constructible in NSPACE(f),

for some f : Z≥0 → Z≥0. Then

1. The language M = {w1# · · ·#wn | (w1, . . . , wn) ∈ L} is an EDT0L language

over Σ t {#};

2. An EDT0L system for M can be constructed in NSPACE(f).

Proof We will construct an EDT0L system H for M as follows. The terminal

alphabet will be Σ∪{#}, the extended alphabet will be C = Σ∪{#, ⊥1, . . . , ⊥n},

and the start word will be ⊥1 # · · ·# ⊥n.

Let A = (Σ, Γ, q0, F) be an n-variable finite-state automaton that accepts L. We

will use A to define the rational control of H. Let W be the set of all n-variable

44

Chapter 4: Equations in virtually abelian groups

words that appear as edge labels within Γ. For each w = (w1, . . . , wn) ∈ W , define

ϕw ∈ End(C∗) by

⊥1 ϕw = w1 ⊥1

...

⊥n ϕw = wn ⊥n .

Also define ψ ∈ End(C∗)

⊥i ψ = ε,

for all i ∈ {1, . . . , n}. Our rational control R will be a regular language over the

set {ϕw | w ∈ W}. Let Γ′ be the edge-labelled graph obtained from Γ, by replacing

the label w on each edge with ϕw.

Consider the (1-variable) finite-state automaton B = (Σ, Γ′, q0, F). Let K be the

language accepted by B. We have that K is precisely the set of all endomorphisms θ

of C∗ that can be written as products of endomorphisms ϕw, for w ∈ W , such that

(⊥1 # · · ·# ⊥n)θ = u1 ⊥1 # · · ·#un ⊥n, for some (u1, . . . , un) ∈ L. Therefore,

the regular language Kψ is the set of all endomorphisms that map ⊥1 # · · ·# ⊥n
to an element of M , and so taking R = Kψ gives the desired EDT0L system.

For (2), since a multivariable finite-state automaton contains an alphabet Σ, this

can be obtained and output in NSPACE(f), and thus the alphabet for the EDT0L

language, Σ∪ {#}, and the extended alphabet C = Σ∪ {#, ⊥1, . . . , ⊥n} can also

be constructed and written to the output tape in NSPACE(f). The start word will

always be ⊥1 # · · ·# ⊥n, regardless of the input, and we can just output this.

It remains to construct the rational control. As in the construction of H, we use the

same set of vertices and edges, but whenever the rational control in H labels an edge

using ϕw, we instead label it using w, and note that ϕw can be effectively computed

from w. To record ϕw, we only need to know where each ⊥i maps (as they always

fix everything else), and that is precisely the information that w contains. �

45

Chapter 4: Equations in virtually abelian groups

4.3 Solution languages in virtually abelian groups

The purpose of this section is to prove that the multivariable solution languages

to systems of equations in virtually abelian groups are accepted by multivariable

finite-state automata, and so solution languages are EDT0L, all with respect to a

natural generating set and normal form. We do this by first showing that the mul-

tivariable solution languages for systems of twisted equations in free abelian groups

are recognised by finite-state automata, and then prove that equations in virtually

abelian groups reduce to twisted equations in free abelian groups. Throughout this

section, when referring to free abelian groups, we will use additive notation. This

means that equations in free abelian groups will be expressed as sums rather than

‘products’. When representing solution languages, we will express them using mul-

tiplicative notation, as this is more natural with languages, using a1, . . . , ak to be

the standard generators of Zk.

The next lemmas are used to prove that systems of equations, and therefore twisted

equations, in free abelian groups have multivariable solution languages accepted

by n-variable finite-state automata, where n is the number of variables. The fact

that free abelian groups have EDT0L solution languages is already known; Diekert,

Jeż and Kufleitner [32] show that right-angled Artin groups have EDT0L solution

languages, and Diekert [30] has a more direct method for systems of equations

in Z, which can easily be generalised to all free abelian groups. For the sake of

completeness, we give our own argument here.

We begin with the following technical definition.

Definition 4.3.1. Let B = [bij] be an n×m integer matrix. Then define a function

| · |B : Rn → R via

|(y1, . . . , yn)|B = max

(∣∣∣∣∣
n∑
i=1

yibi1

∣∣∣∣∣ ,
∣∣∣∣∣
n∑
i=1

yibi2

∣∣∣∣∣ , . . . ,
∣∣∣∣∣
n∑
i=1

yibim

∣∣∣∣∣
)
.

In other words, |y|B is the maximal absolute value of the coordinates of the vector

yB.

46

Chapter 4: Equations in virtually abelian groups

Note that if y ∈ Zn then |y|B ∈ Z, and that | · |B satisfies the triangle inequality.

We now show that we can construct any solution to a system of equations while

controlling the value of | · |B at each intermediate point.

Lemma 4.3.2. Let B be an n × m integer matrix, X be a vector of n variables,

c ∈ Zm, and consider the system of n equations over Z given by XB = c. Write

bmax = maxi,j |bij| and let K = max(|c1|, . . . , |cm|) + n3/2 · bmax.

Then, for each x ∈ Zn such that xB = c, there is a sequence

{0 = x(0), x(1), . . . , x(k) = x} ⊂ Zn

with each x(j) = x(j−1) + ej for some positive or negative standard basis vector ej,

such that |x(j)|B ≤ K for each j ∈ {1, . . . , k}.

Proof First, consider the straight line segment L ⊂ Rn from 0 to x. Since B

defines a linear transformation Rn → Rm, the function | · |B : Rn → R is monotone

non-decreasing as we move along L from 0 to x. Therefore, for each y ∈ L, we

have |y|B ≤ |x|B = max(|c1|, . . . , |cm|). To obtain the required sequence, we

approximate L with a piecewise linear path comprised of (positive and negative)

standard basis vectors.

Consider the set of unit n-cubes with integer-valued corners, which intersect L.

From among the corners of these cubes, we can find a sequence {x(j)} ⊂ Zn of

integer-valued points, where subsequent terms share a cube edge (and so each x(j) =

x(j−1) + ej for some ej), such that x(0) = 0 and x(k) = x, for some k. We will show

that each point in this sequence satisfies the required bound.

Since the diameter of a unit n-cube is
√
n, each point x(j) is a Euclidean distance

of at most
√
n from the line L. In other words, for each j we have x(j) = y + d for

some y ∈ L and d = (d1, . . . , dn) ∈ Rn with |di| ≤
√
n. Then note that for any such

47

Chapter 4: Equations in virtually abelian groups

d we have

|d|B = max

(∣∣∣∣∣
n∑
i=1

dibi1

∣∣∣∣∣ , . . . ,
∣∣∣∣∣
n∑
i=1

dibim

∣∣∣∣∣
)

≤ max

(
n∑
i=1

|di||bi1|, . . . ,
n∑
i=1

|di||bim|

)

≤ max

(
n∑
i=1

√
n · bmax, . . . ,

n∑
i=1

√
n · bmax

)
= (n

√
n)bmax.

We can then bound each element of the sequence as follows:

|x(j)|B = |y + d|B ≤ |y|B + |d|B ≤ max(|c1|, . . . , |cm|) + (n
√
n)bmax = K.

Thus the sequence {x(j)} satisfies the requirements of the Lemma. �

We now show that a system of twisted equations in Zk can be reduced to a system

of (non-twisted) equations in Z.

Lemma 4.3.3. Let SE be the solution set of a finite system E of twisted equations

in Zk in n variables. Then there is a finite system of equations F in Z with kn

variables and solution set SF such that

SE = {((x1, . . . , xk), (xk+1, . . . , x2k), . . . , (x(k−1)n, . . . , xkn)) | (x1, . . . , xkn) ∈ SF}.

Proof Consider a twisted equation in Zk

c0 + Yi1Φ1 + c1 · · ·+ YinΦn + cn = 0, (4.1)

where Y1, . . . , Yn are variables, c0, . . . , cn ∈ Zn are constants, and Φ1, . . . , Φn ∈

GLk(Z). Set c = c0 + · · · + cn. By grouping the occurrences of each Yi, we have

that (4.1) is equivalent to the following identity

Y1B1 + · · ·YnBn + c = 0, (4.2)

where B1 = [b1ij], . . . , Bn = [bnij] are k × k integer-valued matrices, although not

48

Chapter 4: Equations in virtually abelian groups

necessarily in GLk(Z). We will first show that the solution set of (4.2) is equal to

the solution set of a system of k equations in Z. Write Yi = (Yi1, . . . , Yik) and

c = (c1, . . . , cn) for variables Yij over Z and constants ci ∈ Z, for each i. Then

YiBi =
(∑k

j=1 bij1Yij, . . . ,
∑k

j=1 bijkYij

)
, for each i. It follows that the solution set

of (4.2) is equal to the solution set of the following system of equations in Z:

n∑
i=1

k∑
j=1

bij1Yij + ci = 0

...

n∑
i=1

k∑
j=1

bijkYij + ci = 0.

We can conclude that the lemma holds for single twisted equations in Zk. It follows

that the solution set to a system of m twisted equations in Zk will be constructible

as stated in the lemma, from the solution set to a system of m of the above systems;

that is a system of km equations in Z. �

Before we can prove Lemma 4.3.5, we need a slightly altered version of modular

arithmetic, where we replace 0 with the quotient.

Notation 4.3.4. For each n, r ∈ Z≥0 with r > 0, define

nmod+ r =

 nmod r nmod r 6= 0

r nmod r = 0.

We are now in a position to prove that multivariable solution languages to twisted

equations in free abelian groups are accepted by multivariable finite state automata.

We do this by expressing our equation as an identity of matrices, where the coeffi-

cients of the matrix determine the equation. This allows us to use the bound from

Lemma 4.3.2 to construct our automaton.

Lemma 4.3.5. The multivariable solution language to a system of twisted equations

in a free abelian group, with respect to the standard generating set and normal form,

is accepted by a multivariable finite-state automaton.

49

Chapter 4: Equations in virtually abelian groups

Proof Let E be a system ofm twisted equations in Zk in n variables. Let {a1, . . . , ak}

denote the standard generating set for Zk. By Lemma 4.3.3, there is a system of km

equations F in Z with kn variables, such that the solution language to E is equal to

SE =
{(
at11 · · · a

tk
k , a

tk+1

1 · · · at2kk , . . . , a
tk(n−1)+1

1 · · · atknk
) ∣∣∣ (t1, . . . , tkn) is a solution to F

}
.

We represent this new system F via the identity XB = c where

• X = (X1, . . . , Xkn) is a row vector of kn variables,

• B = [bij] is a kn× km matrix of coefficients, and

• c ∈ Zkm is a row vector of constants.

The constant of Lemma 4.3.2 is then K = max(|c1|, . . . , |ckm|) + (kn)3/2bmax.

We can now show that the multivariable solution language is accepted by a kn-

variable finite-state automaton, using the method described in Example 4.2.12. We

define our automaton A to have the set of states

{qx | x = (x1, . . . , xkn) ∈ Zkn, |xi| ≤ K},

Our start state will be q0, and qc will be our only accept state. Let wi be the

kn-variable word with aimod+ k in the ith position, and ε elsewhere. We have an

edge from qx to qy labelled with wj for all j such that x + (bj1, . . . , bj(kn)) = y.

By construction, the language accepted by A is contained within SE . On the other

hand, any word in SE is accepted by A, by following an appropriate sequence as

given by Lemma 4.3.2. �

We now consider the space complexity that is needed to construct the multivariable

finite-state automaton defined in the proof of Lemma 4.3.5.

Recall the virtually abelian length of a system of equations (see Definition 2.6.10).

We will be using this as the length of our input.

Lemma 4.3.6. The multivariable finite-state automaton defined in Lemma 4.3.5

can be constructed in non-deterministic quadratic space, with the input taken as the

50

Chapter 4: Equations in virtually abelian groups

virtually abelian length of the system.

Proof Let k be the rank of the free abelian group, E be the system of equations,

n be the number of variables, and m be the number of equations. We start by

converting E into the form XB = c (all we need to store is B and c). Let I ∈ Z≥0

be the length of the input.

Index the equations w1, . . . , wm. We copy each equation in E into the work tape,

so our work tape will now have the same size as our input. We have assumed our

equations are already in the form stated in Definition 2.6.10, and converting them

to additive notation means they will be in the form

Y1B1 + · · ·YnBn = d,

where each Bi is a k × k matrix, each Yi is a variable, and d ∈ Zk. We will

now construct the matrix B and the vector c. We write Yi = (Yi1, . . . , Yik), and

B1 = [b1ij], . . . , Bn = [bnij]. For each equation

Y1B1 + · · ·YnBn = d,

add the following vectors as columns to B, and store them in the work tape:

(b111, . . . , bnk1), . . . (b11k, . . . , bnkk).

The matrix B will at this point be a kn × km matrix. For each equation, we also

append the entries of d to the vector c.

We now construct the states. Since our set of states is the set of all qx such that

x ∈ Zkn with each coordinate having absolute value at most K, where K is from

Lemma 4.3.2, we can construct the set of states by remembering the last state

constructed, together with the bound K, and proceeding in any ‘sensible’ systematic

manner, such as starting in one ‘corner’, and running down each line in the ‘cube’.

To do this, we need a memory that can store a vector of length kn at any time, with

entries within [−K, K].

51

Chapter 4: Equations in virtually abelian groups

As in the proof of Lemma 4.3.5, K = max(|c1|, . . . , |ckm|) + (kn)3/2 · bmax, where

bmax = maxi,j |bij|. Recall I =
∑

i log |ci|+
∑

i,j log |bij|+Ckn, where C is a constant,

as mentioned in Definition 2.6.10. Then

logK ≤ log |c1|+ · · ·+ log |ckm|+
3

2
log(kn) + log |bmax| ≤

3

2
I

So storing an integer within [−K, K] requires 3
2
I bits, ignoring constants. Since

kn ≤ I, storing a vector of length kn with entries in [−K, K] requires at most 3
2
I2

bits.

We can simply assign 0 and c as the start and accept states.

We now need to compute the edges. Recall that we have an edge from qx to qy

labelled with wj for all j such that x + (bj1, . . . , bj(kn)) = y, where wj is the kn-

variable word with aimod+ k in the ith position and ε elsewhere. Therefore, we can

go through the states systematically and add all of the outgoing edges, and we only

need to remember the state we are on in order to compute and output its outgoing

edges and their labels. To do this, we only need to record a vector of length kn, the

entries of which will lie in [−K, K]. As discussed before, this requires at most 3
2
I2

bits to store. �

In the next lemma, we show that the solution set to a system of equations in an

arbitrary group can be expressed in terms of the solution set to a system of twisted

equations in a finite-index subgroup.

Lemma 4.3.7. Let G be a group, and T be a finite transversal of a normal subgroup

H of finite index. Let Ω be the group of automorphisms of H induced by conjugating

H by elements of G. Let S be the solution set to a finite system EG of equations with

rational constraints in n variables in G. Then there is a finite set B ⊆ T n, and for

each t = (t1, . . . , tn) ∈ B, there is a solution set At to a system EH,t of Ω-twisted

equations with rational constraints in H, such that

S =
⋃

(t1, ..., tn)∈B

{
(h1t1, . . . , hntn) | (h1, . . . , hn) ∈ A(t1, ..., tn)

}
.

52

Chapter 4: Equations in virtually abelian groups

Proof Let

X
ε1j
i1j
g1j · · ·X

εpj
ipj
gpj = 1 (4.3)

be a system EG of equations in G, with a set {RX1 , . . . , RXn} of rational constraints,

where X1, . . . , Xn are the variables, and j ∈ {1, . . . , k}. Let S be the solution set.

Note that we can assume that these equations start with variables by conjugating

leading constants to the right. For each Xi, define new variables Yi over H, and

Zi over T , such that Xi = YiZi. For each constant gi, we have gi = hiti, for some

hi ∈ H and ti ∈ T , and so substituting these into (4.3) gives that EG is equivalent

to

(Yi1jZi1j)
εi1jh1jt1j · · · (YipjZipj)

εipjhpjtpj = 1. (4.4)

For all g ∈ G, define ψg : G → G by hψg = ghg−1. Note that ψg �H∈ Ω for all

g ∈ G, by definition. By abusing notation, we can define ψZi for each i. For all

i ∈ {1, . . . , n}, and j ∈ {1, . . . , k} define

δij =

 0 εij = 1

1 εij = −1.

We can use this notation to rearrange (4.4) into

(Y
ε1j
i1j
ψ
δ1j
Zi1j

)Z
ε1j
i1j
h1jt1j · · · (Y

εpj
ipj
ψ
δpj
Zipj

)Z
εpj
ipj
hpjtpj = 1. (4.5)

For l ∈ {1, . . . , p}, define

Wl = (Y
εlj
ilj

)ψ
δlj
Zilj

ψt(l−1)j
ψ
ε(l−1)j

Zi(l−1)j
· · ·ψt1jψ

ε1j
Zi1j

,

fl = (hlj)ψ
εlj
Zilj

ψt(l−1)j
· · ·ψt1jψ

ε1j
Zi1j

.

By pushing all Yis and his to the left within (4.5), we obtain

W1f1 · · ·WpfpZ
ε1j
i1j
t1j · · ·Z

εpj
ipj
tpj = 1. (4.6)

53

Chapter 4: Equations in virtually abelian groups

As H is a finite index subgroup of G, Ht is a recognisable subset of G, for all t ∈ T .

For each coset Ht of H, and each variable Xi let Rti = RXi ∩ (Ht). Note that

each set Rti is rational, since each Rti is the intersection of a rational set with a

recognisable set.

By Lemma 2.5.4, we have that for each t ∈ T , Rti = Stit, for some rational subset

Sti of H. For every (u1, . . . , un) ∈ T n that forms a solution to the Zis within a

solution to (4.6), we have uε1i1 t1 · · ·u
εp
ip
tp ∈ H. Let A ⊆ T n be the set of all such

n-tuples. If we plug a fixed choice of some (u1, . . . , un) ∈ T n into (4.6), we obtain

the following system of Ω-twisted equations in H:

W̄1f1 · · · W̄pfpu
ε1j
i1j
t1j · · ·u

εpj
ipj
tpj = 1,

where

W̄l = (Y
εlj
ilj

)ψ
δlj
uilj
ψt(l−1)j

ψ
ε(l−1)j
ui(l−1)j

· · ·ψt1jψε1jui1j ,

is Wl, with each Zi being replaced by ui. We can now apply the rational constraint

Sti to the variable Yi, and we have a system of equations EH,(u1,...,un) with rational

constraints in H. Let B(u1, ..., un) be the solution set to EH,(u1,...,un). It follows that

S =
⋃

(u1, ..., un)∈A

{(f1u1, . . . , fnun) | (f1, . . . , fn) ∈ B(u1, ..., un)}.

�

Remark 4.3.8. Let G be a finite index overgroup of a group H. We will define a

normal form for G, induced by an existing normal form on H. Let

• ΣH be a finite generating set for H;

• ηH be a normal form for H, with respect to ΣH ;

• T be a (finite) right transversal for H in G.

We will use Σ = ΣH t T as our generating set for G. Each g ∈ G can be written

uniquely in the form g = hgtg for some hg ∈ H and tg ∈ T . Define η : G → (Σ±)∗

by

gη = (hgηH)tg.

54

Chapter 4: Equations in virtually abelian groups

Note that if ηH is regular, then η is regular, as the concatenation of im ηH with a

finite language.

As the following lemma shows, this construction also preserves the property of being

quasi-geodesic.

The following proposition reflects a well-known fact about decidability of systems

of equations in groups: if a group G has a finite index normal subgroup H, such

that there is an algorithm that determines if any system of twisted equations in

H admits a solution, then there is an algorithm that determines if any system of

(untwisted) equations G admits a solution. This fact turns out to be true regarding

EDT0L solutions, and a variant of it is used in [31].

Proposition 4.3.9. Let G be a group with a finite index normal subgroup H, such

that the multivariable solution language to systems of Ω-twisted equations in H with

rational constraints are accepted by an n-variable finite-state automaton, for some

n ∈ Z>0, with respect to a generating set Σ, and normal form η.

Then the multivariable solution language to any system of equations in G is accepted

by an n-variable finite-state automaton, for some n ∈ Z>0, with respect to the gen-

erating set Σ ∪ T , for any right transversal T of H, and the normal form ζ, where

gζ = (hη)t, where h ∈ H and t ∈ T are (unique) such that g = ht.

Proof We have from Lemma 4.3.7, that the solution language is a finite union

across valid choices of transversal vectors (t1, . . . , tn) of

{((h1η)t1, . . . , (hnη)tn) | (h1, . . . , hn) ∈ A(t1, ..., tn)}, (4.7)

where A(t1, ..., tn) is the solution set to a system of twisted equations in H. Since

the class of languages accepted by n-variable finite-state automata is closed under

finite unions, it suffices to show that (4.7) is accepted by an n-variable finite-state

automaton.

55

Chapter 4: Equations in virtually abelian groups

By our assumptions on H, the language

{(h1η, . . . , hnη) | (h1, . . . , hn) ∈ A(t1, ..., tn)}

is accepted by an n-variable finite-state automaton M, for any valid choice of

transversal vector (t1, . . . , tn). We can therefore modify this automaton to ac-

cept

{(h1t1, . . . , hntn) | (h1, . . . , hn) ∈ A(t1, ..., tn)}

We do this by adding a new state q, and with an edge labelled (t1, . . . , tn) from

every accept state ofM, and making q the only accept state. By construction, this

accepts the stated language. �

Lemma 4.3.10. Let G, H, n and Σ be defined as in Proposition 4.3.9, and suppose

the multivariable finite-state automaton that accepts a system of twisted equations

in H, in the statement of Proposition 4.3.9, is constructible in NSPACE(f), where

f : Z≥0 → Z≥0 is a function. Then the automaton that accepts a system of equations

in G is also constructible in NSPACE(f).

Proof By Lemma 4.2.14, it suffices to show that each automaton that accepts a

language

{(h1t1, . . . , hntn) | (h1, . . . , hn) ∈ A(t1, ..., tn)},

where A(t1,...,tn) is as defined in the proof of Proposition 4.3.9. Recall that this is

constructed from the automatonM that accepts a system of twisted equations in H

by adding one additional state q, and edges from each accept state to q, all labelled

(t1, . . . , tn), and then by making q the only accept state. We do this by modifying

the algorithm that constructsM to add the state q at the beginning, then perform

the algorithm that constructs M, except whenever we would label a state p as an

accept state, we instead add an edge from p to q, labelled by (t1, . . . , tn). This

does not use a longer work tape than the algorithm that constructs M. �

Lemma 4.3.11. Let G, H, Σ, ΣH , T , η and ηH be defined as in Remark 4.3.8.

Then ηH is quasi-geodesic if and only if η is quasi-geodesic.

56

Chapter 4: Equations in virtually abelian groups

Proof (⇒): Suppose ηH is quasi-geodesic. Then there exists λ > 0, such that

|hηH | ≤ λ|h|(H,ΣH) + λ for all h ∈ H.

For each t ∈ T and a ∈ Σ±, ta = νt,a, for some νt,a ∈ im η. For all t, t′ ∈ T , we

have tt′ = ρt,t′ , for some ρt,t′ ∈ im η. For each t−1 ∈ T−1, we have that t−1 =G xt−1 ,

where xt−1 ∈ (Σ±H ∪ T)∗. Let

µ = max
t−1∈T−1

|xt−1|+ max
t,t′∈T

|ρt,t′ |+ max
a∈ΣH
t∈T

|νt,a|

Let w ∈ (Σ±)∗ be a geodesic. We will convert w ∈ (Σ±)∗ into a word u, such that

u =G w and u ∈ im η, and we will show that |u| ≤ µ2λ|w|+ µ2λ.

We first replace each occurrence of t−1 ∈ T−1 with the word xt−1 within w. Since

|xt−1| ≤ µ for all t−1 ∈ T , doing this will result in a new word w1 ∈ (Σ±H ∪ T)∗, such

that w1 =G w, and |w1| ≤ µ|w|.

We now modify w1 into a word w2 such that w1 =G w2, and w2 contains no subword

of the form ta or tt′, where t, t′ ∈ T and a ∈ Σ±H . For each subword ta of w, we can

replace ta with νt,a, and for every occurrence of tt′, we can replace this with ρt,t′ .

Each time we do this, we increase the length of the word by at most µ. Repeating

this process until no subwords of the form ta remain, will yield w2.

To ensure we don’t need to do too many of these replacements to satisfy linear bound

of the length of w2 in terms of w1, we will always apply the leftmost substitution

possible. As every replacement involves a letter t ∈ T at the beginning of a two-letter

word, and results in a word with exactly one two-letter in T at the end, one ‘sweep’

along w1 will be sufficient to reach a word where no substitutions are possible. It

follows that we can make at most |w1| replacements, and since each substitution

increases the length by at most µ, we have that |w2| ≤ µ|w1|.

We have that w2 = vt, for some v ∈ (Σ±H)∗, and some t ∈ T . To convert w3 into u,

it remains to replace v with an equivalent word q ∈ im ηH . As ηH is quasi-geodesic

with the constant λ, |q| ≤ λ|v| + λ. If we take u = qt, then u is equivalent in G to

57

Chapter 4: Equations in virtually abelian groups

w, and u ∈ im η. Note also that |u| ≤ λ|w2|+ λ. Therefore

|u| = λ|w2|+ λ ≤ µλ|w1|+ µλ ≤ µ2λ|w|+ µ2λ.

It follows that ηH is quasi-geodesic, with respect to the constant λµ2.

(⇐): Suppose η is quasi-geodesic, with respect to a constant λ > 0. Let w ∈ (Σ±H)∗

be a geodesic, u ∈ im ηH be such that u =H w, and v ∈ (Σ±)∗ be a geodesic in

G, such that v =G w. Note that u ∈ im η. As η is quasi-geodesic, |u| ≤ λ|v| + λ.

Moreover, since |w| and |v| are both geodesic words representing elements that lie

in H, but v is over the generating set ΣG that contains the generating set ΣH for

w, |v| ≤ |w|. Thus |u| ≤ λ|w|+ λ, as required. �

We now have enough to prove our first main result. Our generating set is the union

of the standard generating set Σ of the finite index free abelian subgroup together

with a right transversal T . We use the quasi-geodesic normal form

{at | a ∈ Σ, t ∈ T}.

Definition 4.3.12. Let k ∈ Z>0. A subset of Zk that can be written in the form

{c1n1 + · · ·+ crnr + d | n1, . . . , nr ∈ Z≥0},

where ci, d ∈ Zk for all i, is called linear. A finite union of linear sets is called

semilinear.

Showing that semilinear sets are rational is immediate from the definition. The

converse is also true, thus giving a full classification of rational sets in free abelian

groups.

Lemma 4.3.13 ([43]). A subset of a free abelian group is rational if and only if it

is semilinear.

Since semilinear sets are defined in terms of equations and inequalities, we can

use this to describe sets of solutions to systems of twisted equations with rational

58

Chapter 4: Equations in virtually abelian groups

constraints in free abelian groups.

Lemma 4.3.14. Let SE be the solution set of a finite system E of twisted equations

in Zk in n variables with rational constraints. Then there is a finite disjunction F of

finite systems of arbitrary equations, and inequalities of the form X ≥ 0, for some

variable X, in Z with kn variables and solution set SF such that

SE = {((x1, . . . , xk), . . . , (x(k−1)n+1, . . . , xkn)) | (x1, . . . , xkn, y1, . . . , yr) ∈ SF}.

Proof Converting the twisted system into a system over Z can be done by replacing

each variable X over Zk with k variables X1, . . . , Xk over Z, and considering the

system that results from looking at each coordinate individually, as we did in the

proof of Lemma 4.3.7. Now consider the membership problem of a variable X into

a linear set R = {c1n1 + · · ·+ crnr + d | n1, . . . , nr ∈ Z≥0} (we will then generalise

to semilinear).

Write ci = (ci1, . . . , cik) and d = (d1, . . . , dk). Consider the following system of

equations and inequalities over Z.

Yi ≥ 0, Xj = c1jY1 + · · · crjYr + dj

for all i ∈ {1, . . . , r}, and j ∈ {1, . . . , k}, where Y1, . . . , Yr are new variables over

Z. We have that (x1, . . . , xk) ∈ Zk occurs within a solution (x1, . . . , xk, y1, . . . , yk)

to the above system, if and only if (x1, . . . , xk) ∈ R.

The result follows from the fact that the solution set to a disjunction of systems

is just the union of the solution sets, so if we take the disjunction of the systems

obtained from each linear set used in the finite union of a semilinear set, we obtain

the desired disjunction. �

We are now in a position to describe the solution language to a system of twisted

equations with constraints in a free abelian group, using an EDT0L system.

Lemma 4.3.15. The multivariable solution language to a system of twisted equa-

tions with rational constraints in a free abelian group, with respect to the virtually

59

Chapter 4: Equations in virtually abelian groups

abelian equation length, and the standard generating set and normal form, is accepted

by a multivariable finite-state automaton, which is constructible in non-deterministic

quadratic space.

Proof We will use Σ = {a1, . . . , ak} to denote the standard generating set for Zk.

Let E be a system of equations in Zk with a Multivariable solution language L. By

Lemma 4.3.14, there is a disjunction F of systems of equations, and inequalities of

the form X ≥ 0, in Z, with set of solutions SF , such that

L = {(ax11 · · · a
xk
k , . . . , a

x(k−1)n+1

1 · · · axknk) | (x1, . . . , xkn, y1, . . . , yr) ∈ SF}.

Consider the following language

M = {(ax11 , . . . , a
xk
k , . . . , a

x(k−1)n+1

1 , . . . , axknk , by11 , . . . , b
yr
r) | (x1, . . . , xkn, y1, . . . , yr) ∈ SF}.

We will start by showing that M is accepted by a kn-variable finite-state automa-

ton, constructible in NSPACE(n2). First note that as this class is closed under finite

unions (Lemma 2.4.3), we can assume F is a single system of equations and inequal-

ities, rather than a disjunction of systems. Let m be the number of inequalities of

the form X ≥ 0 within F .

We will proceed by induction on m. If m = 0, then F is a system of equations

in Z, and thus the solutions are accepted by a kn-variable finite-state automaton

that is constructible in NSPACE(n2), by Lemma 4.3.5 and Lemma 4.3.6. Inductively

suppose M is accepted by such a kn-variable finite-state automaton, constructible

in NSPACE(n2), when m = r, where r ∈ Z≥0. If m = r+ 1, then F can be obtained

from a system of equations and inequalities G, with the addition of a single inequality

X ≥ 0. By our inductive hypothesis, the solution language of G is EDT0L, and an

EDT0L system can be constructed in NSPACE(n2).

The addition of the inequality X ≥ 0, can be achieved by intersecting the coordinate

of the solution language of G corresponding to the variable X with the regular

language {ai}∗, where ai is the free abelian generator corresponding to X. The

fact that this intersection is still accepted by a kn-variable finite-state automaton

60

Chapter 4: Equations in virtually abelian groups

constructible in NSPACE(n2) follows from Lemma 4.2.13. Since this intersection

equals M , we have that M is accepted by a kn-variable finite-state automaton,

constructible in NSPACE(f).

To obtain L from M , all we have to do is ignore the last r coordinates, so we take

an automaton for M , and we define one for L by removing the last r coordinates

from each label. Since this can be done using the same space, the result follows. �

We now have everything needed to show the following.

Theorem 4.3.16. Solutions to a system of equations with rational constraints in a

virtually abelian group are accepted by a multivariable finite-state automaton, with

respect to the regular quasi-geodesic normal form from Remark 4.3.8, induced by

the standard normal form on free abelian groups. Moreover, this automaton is con-

structible in non-deterministic quadratic space, with respect to the virtually abelian

equation length.

Proof This fact that the solutions are accepted by a multivariable finite-state au-

tomaton, constructible in NSPACE(n2) follows from Lemma 4.3.15 and Proposition

4.3.9. The fact that the normal form is regular and quasi-geodesic follows from Re-

mark 4.3.8, and Lemma 4.3.11, respectively, together with the fact that the standard

normal form on a free abelian group is regular and quasi-geodesic. �

Corollary 4.3.17. Solutions to a system of equations with rational constraints in a

virtually abelian group are EDT0L in non-deterministic quadratic space, with respect

to the virtually abelian equation length, and with respect to the regular quasi-geodesic

normal form from Remark 4.3.8, induced by the standard normal form on free abelian

groups.

Proof This follows from Theorem 4.3.16 and Lemma 4.2.16. �

Remark 4.3.18. Corollary 4.3.17 uses the normal form defined by writing an el-

ement of a virtually abelian group as a product of a word in the finite-index free

abelian normal subgroup, written in standard normal form, with an element of the

(finite) transversal for that subgroup.

61

Chapter 4: Equations in virtually abelian groups

We can change our generating set to any other generating set, and there will exist a

normal form such that solution languages are still EDT0L. Adding a new generator

does not change the language at all, as we can keep the normal form the same, and so

our new generator will not appear in any normal form word. To remove a redundant

generator c, we can fix a word wc over the remaining generators and their inverses

that represents the same element as c, and apply the free monoid homomorphism

that maps c to wc. This corresponds to changing the normal form used by replacing

every occurrence of c with wc.

Changing the normal form is more difficult. In [19], Section 5, Ciobanu and Elder

show that changing between quasi-geodesic normal forms will not affect whether

or not the solution language to a given system is EDT0L. This relies on the fact

that in a hyperbolic group G, the set of all pairs (u, v) of (λ, µ)-quasi-geodesics

such that u =G v is accepted by a 2-variable finite-state automaton. Unfortunately,

this doesn’t work in Z2, so a different approach would be required to preserve the

EDT0L status of the language when changing between normal forms in virtually

abelian groups.

We now study the growth series of the solution language to a system of equations in

virtually abelian groups. For this, we need the following result on polyhedral sets.

Lemma 4.3.19. Let A ⊆ (Zk)n be the solution set to a system of twisted equations

in Zk (with n variables). Then A is a polyhedral subset of Zkn.

Proof By Lemma 4.3.3, A may be viewed as the set of solutions to a system of

(non-twisted) equations in Z, with kn variables, with each element of A given as a

vector in Zkn, with respect to the standard basis of Zkn. Now a single such equation

in Z may be expressed as
kn∑
i=1

aixi = b

for variables xi and constants ai, b ∈ Z. Therefore the solution set to such an

equation has the form

{
(x1, . . . , xkn) ∈ Zkn

∣∣∣∣∣
kn∑
i=1

aixi = b

}
=
{
x ∈ Zkn

∣∣ a · x = b
}

62

Chapter 4: Equations in virtually abelian groups

and is thus an elementary set (see Definition 4.2.2). The solution set to a system of

equations is then the intersection of finitely many elementary sets, and is therefore

a polyhedral set by the definition.

�

We can now use the polyhedral structure of solution sets in Zk to prove the following

Proposition about the growth of solution languages in virtually abelian groups.

Proposition 4.3.20. The solution language of any system of equations in a virtually

abelian group has rational growth series.

Proof As before, let G be a virtually abelian group and let Zk denote a free abelian

normal subgroup of finite index, and T a choice of transversal. The normal form on

Zk given by the standard basis vectors is denoted η. By Lemma 4.3.7, the solution

language is given by a finite union of sets of the form

{(h1η)t1#(h2η)t2# · · ·#(hnη)tn | (h1, . . . , hn) ∈ At} (4.8)

where n is the number of variables, t = (t1, . . . , tn) is some subset of T n, and each

At is the solution set to some system of twisted equations in Zk.

Now, the word (h1η)t1# · · ·#(hnη)tn ∈ (T ∪ {#} ∪ {±ei | 1 ≤ i ≤ kn})∗ has length

2n− 1 + |(h1, . . . , hn)|. So the growth series of the set (4.8) is equal to the growth

series of At multiplied by z2n−1. That is,

z2n−1

∞∑
m=0

#{(h1, . . . , hn) ∈ At | |(h1, . . . , ht)| = m}zm.

Since each At is polyhedral by Lemma 4.3.19, Corollary 4.2.8 implies that their

growth series (with the weight of each generator equal to 1 in this case) is rational,

and hence the growth series of (4.8) is also rational. So the growth series of the

solution language is a finite sum of rational functions, and is therefore rational. �

Remark 4.3.21. We note that the language above will not be context-free in gen-

eral. For example, suppose the underlying group is Z = 〈x〉, and consider the

63

Chapter 4: Equations in virtually abelian groups

equation X = Y = Z (more formally the system of equations XY −1 = Y Z−1 = 1).

In the notation of this thesis, the set of solutions is {am#am#am | m ∈ Z}, which

is not context-free over the alphabet {a, a−1, #} by standard techniques.

Thus we have a large class of EDT0L languages, with rational growth series, which

are not, in general, context-free.

4.4 Relative growth of algebraic sets

We now study the nature of algebraic sets from a different point of view. Expanding

on the theme of Proposition 4.3.20, we consider the growth of algebraic sets, this

time as sets of tuples of group elements, with respect to a metric inherited from the

word metric on the group.

The usual notion of the growth function of a group can be altered by restricting to a

subset. This is known as relative growth. The study of relative growth of subgroups

in particular has attracted significant interest, for example Davis-Olshanskii [28],

and recently Cordes-Russell-Spriano-Zalloum [25]. Here, we define and study the

relative growth of algebraic sets. Since such a set is a subset of Gn, rather than

G itself, we must decide how to assign lengths to tuples. We do this in perhaps

the most obvious way, by taking the sum of the lengths of the components (see

Definition 4.4.2).

Since the growth of virtually abelian groups is always polynomial (that is, the num-

ber of elements of length n is at most polynomial in n), it is clear that the same

will be true of algebraic sets. Instead, we study the growth series, the formal power

series associated to the relative growth function of an algebraic set, and show that

this is always a rational function (see Theorem 4.4.3). This means that there exists

a set of unique geodesic representatives for each algebraic set, which has rational

growth series as a language.

An alternative approach which avoids the need to define the length of n-tuples of

group elements is to study the multivariate growth series, the formal power series

64

Chapter 4: Equations in virtually abelian groups

in n variables, which correspond to the n variables of the system of equations in

question (see Definition 4.4.2). In this case, we have the weaker result that the

series is always holonomic (Corollary 4.4.21).

From now on we will assume that G is virtually abelian with a normal, finite index

subgroup isomorphic to Zk for some positive integer k.

Definition 4.4.1. Let G be generated by a finite set S and suppose S is equipped

with a weight function ‖ · ‖ : S → Z>0. This naturally extends to S∗ so that

‖s1s2 · · · sk‖ =
∑k

i=1 ‖si‖.

1. Define the weight of a group element as

‖g‖ = min{‖w‖ | w ∈ S∗, w =G g}.

Any word representing g whose weight is equal to ‖g‖ will be called geodesic.

This coincides with the usual notion of word length when the weight of each

non-trivial generator is equal to 1.

2. Let V ⊆ G be any subset. Then the relative weighted growth function of V

relative to G, with respect to S, is defined as

σV⊆G,S(m) = #{g ∈ V | ‖g‖ = m}.

For simplicity of notation, we will write σV (m) when the other information is

clear from context.

3. The corresponding weighted growth series is the formal power series

SV⊆G,S(z) =
∞∑
m=0

σV⊆G,S(m)zm.

Benson proved in [8] that the series SG⊆G(z) is always rational (that is, the standard

growth series ofG), and Evetts proved in [45] that for any subgroupH ofG, the series

SH⊆G(z) is always rational. Both of these results hold regardless of the choice of

finite weighted generating set. As discussed, we wish to apply these ideas to algebraic

sets, which are subsets of Gn in general, for some positive integer n. Therefore, we

extend Definition 4.4.1 as follows.

65

Chapter 4: Equations in virtually abelian groups

Definition 4.4.2. Let G be generated by a finite inverse closed set S, equipped

with a weight function ‖ · ‖.

1. We use ‖ · ‖ on S to define a function ‖ · ‖ : G→ Z≥0 by

‖x‖ = min{‖v1‖+ · · ·+ ‖vk‖ | vi ∈ S, v1 · · · vk =G x}.

2. Let x = (x1, . . . , xn) ∈ Gn be any n-tuple of elements of G. Define the weight

of x as follows:

‖x‖ =
n∑
i=1

‖xi‖.

3. Let V ⊆ Gn be any set of n-tuples of elements. Then the relative weighted

growth function of V is defined as the function

σV⊆Gn,S(m) = #{x ∈ V | ‖x‖ = m}.

4. The corresponding (univariate) weighted growth series is

SV⊆Gn,S(z) =
∞∑
m=0

σV⊆Gn,S(m)zm ∈ Q[[z]].

5. The multivariate growth series is the formal power series

MV⊆Gn,S(z1, . . . , zn) =
∑

(x1,...,xn)∈V

z
‖x1‖
1 · · · z‖xn‖n ∈ Q[[z1, z2, . . . , zn]],

We will suppress some or all of the subscripts when it is clear what the notation

refers to.

With these definitions, we can state the main result of this section.

Theorem 4.4.3. Let G be a virtually abelian group. Then every algebraic set of G

has rational weighted growth series with respect to any finite generating set.

66

Chapter 4: Equations in virtually abelian groups

4.4.1 Structure of virtually abelian groups

To prove the Theorem, we will extend the framework used in [8] and [45] to apply

to our setting. We give the necessary definitions and results below, and refer the

reader to the above mentioned articles for full details.

Definition 4.4.4. As above, fix a finite inverse closed generating set S for G.

1. We define A = S∩Zk and B = S \A. Any word in B∗ will be called a pattern.

2. Let A = {x1, . . . , xr}, and π = y1y2 · · · yl be some pattern (with each yi ∈ B).

Then a word in S∗ of the form

w = xi11 x
i2
2 · · ·xirr y1x

ir+1

1 x
ir+2

2 · · ·xi2rr y2 · · · ylxilr+1

1 x
ilr+2

2 · · · xilr+rr (4.9)

for non-negative integers ij is called a π-patterned word. For a fixed π ∈ B∗,

denote the set of all such words by W π.

This definition allows us to identify patterned words with vectors of non-negative

integers, by focussing on just the powers of the generators in A as follows.

Definition 4.4.5. Fix a pattern π of length l, and write mπ = lr + r. Define a

bijection φπ : W π → Zmπ≥0 via

φπ : xi11 x
i2
2 · · ·xirr y1x

ir+1

1 x
ir+2

2 · · ·xi2rr y2 · · · ylxilr+1

1 x
ilr+2

2 · · ·xilr+rr 7→ (i1, i2, . . . , ilr+r).

This bijection will allow us to count subsets of Zmπ in place of sets of words. We

apply the weight function ‖ · ‖ to Zmπ in the natural way, weighting each coordinate

with the weight of the corresponding x ∈ A. More formally, we have

‖(i1, . . . , imπ)‖ :=
mπ∑
j=1

ij‖xjmod+ r‖.

Then φπ preserves the weight of words in W π, up to a constant:

‖wφπ‖ = ‖w‖ − ‖π‖.

67

Chapter 4: Equations in virtually abelian groups

Fix a transversal T for the cosets of Zk in G. Note that, since Zk is a normal

subgroup, we can move each yi in the word (4.9) to the right, modifying only the

generators from A, and we have w ∈ Zkπ. Thus W π ⊂ Zktπ for some tπ ∈ T where

π ∈ Zktπ.

It turns out that we can pass from a word w ∈ W π to the normal form (with

respect to T and the standard basis for Zk) of the element w using an integral affine

transformation.

Proposition 4.4.6 (Section 12 of [8]). For each pattern π ∈ B∗, there exists an

integral affine transformation Aπ : Zmπ≥0 → Zk such that w = (wφπAπ) tπ for each

w ∈ W π.

Observe that the union
⋃
W π of patterned sets taken over all patterns π contains a

geodesic representative for every group element (since any geodesic can be arranged

into a patterned word without changing its image in the group). However, this is

an infinite union, since patterns are simply elements of B∗.

Consider the extended generating set S̃ defined as follows:

S̃ = {s1s2 · · · sc | si ∈ S, 1 ≤ c ≤ [G : Zk]}.

Define a weight function ‖ · ‖∼ : S̃ → Z>0 via ‖s1s2 · · · sc‖∼ =
∑c

i=1 ‖si‖. Notice

that although group elements will have different lengths with respect to this new

generating set, we have ‖g‖∼ = ‖g‖ for any g ∈ G. Thus the weighted growth

functions, and hence series, of any subset V ⊆ G with respect to S and S̃ are equal.

The following fact shows that passing to this extended generating set means we only

need consider finitely many patterns.

Proposition 4.4.7 (11.3 of [8]). Every element of G has a geodesic representative

with a pattern whose length (with respect to S̃) does not exceed [G : Zk].

Definition 4.4.8. Let P denote the set of patterns of length at most [G : Zk] (with

respect to S̃).

From now on we will implicitly work with the extended generating set, allowing us

68

Chapter 4: Equations in virtually abelian groups

to restrict ourselves to the finite set of patterns P .

We now reduce each W π so that we have only a single geodesic representative for

each element of G.

Theorem 4.4.9 (Section 12 of [8]). For each π ∈ P , there exists a set Uπ ⊂ W π such

that every word in Uπ is geodesic, every element in G is represented by some word in⋃
π∈P U

π, and no two words in
⋃
π∈P U

π represent the same element. Furthermore,

each Uπφπ is a polyhedral set in Zmπ .

Corollary 4.4.10. The weighted growth series SG⊆G(z) of G is rational, with respect

to all generating sets.

Proof The growth series SG⊆G is precisely the growth series of
⋃
π∈P U

π as a set.

From Definition 4.4.5 we have

SUπ⊆G(z) = z‖π‖SUπφπ(z)

and thus

SG⊆G(z) =
∑
π∈P

z‖π‖SUπφπ(z)

is rational, since each SUπφπ(z) is a positive polyhedral set and hence rational by

Proposition 4.2.7

�

4.4.2 Univariate growth series of algebraic sets

We can now demonstrate our main result. This will be a consequence of a more

general rationality criterion. First, we make the following definitions, extending the

framework explained above to n-tuples of group elements.

Definition 4.4.11. Let π = (π1, . . . , πn) ∈ P n be a tuple of patterns, with respect

to S̃.

1. Let W π = W π1 × · · · ×W πn and Uπ = Uπ1 × · · · ×Uπn ⊂ (S∗)n. Note that Uπ

is a polyhedral set by Proposition 4.2.3.

69

Chapter 4: Equations in virtually abelian groups

2. Let mπ =
∑n

i=1mπi , and ‖π‖ =
∑n

i=1 ‖πi‖.

3. Define a map φπ : W π → Zmπ≥0 in the natural way via

(w1, . . . , un) 7→ (w1φπ1 , . . . , unφπn).

As in the above discussion, φπ preserves the weight of words, up to a constant,

i.e.

‖(w1, . . . , un)φπ‖ =
n∑
i=1

‖wi‖ − ‖π‖.

4. Given Aπi as in Proposition 4.4.6, define an integral affine transformation

Aπ : Zπ≥0 → Zkn in the natural way via

(x1, . . . , xn) 7→ (x1Aπ1 , . . . , xnAπn) ∈ Zk × · · · × Zk.

Now we define a class of subsets of finitely generated virtually abelian groups which

is particularly amenable to study using the tools we have described.

Definition 4.4.12. Let T be a choice of transversal for the finite index normal

subgroup Zk. A subset V ⊆ Gn will be called coset-wise polyhedral if, for each

t = (t1, . . . , tn) ∈ T n, the set

Vt =
{(
g1t
−1
1 , g2t

−1
2 , . . . , gnt

−1
n

)
| (g1, . . . , gn) ∈ V, gi ∈ Zkti

}
⊆ Zkn

is polyhedral.

Remark 4.4.13. Note that the definition is independent of the choice of T . Indeed,

suppose that we chose a different transversal T ′ so that for each tj ∈ T we have

t′j ∈ T ′ with Zktj = Zkt′j. Then there exists yj ∈ Zk with tj = yjt
′
j for each j, and

so gt′j
−1 = gjt

−1
j yi for any g ∈ Zktj = Zkt′j. So changing the transversal changes the

set Vt by adding a constant vector (y1, . . . , yn), and so it remains polyhedral by

Proposition 4.2.5.

As an example of Definition 4.4.12, we provide a brief proof that subgroups are

coset-wise polyhedral.

70

Chapter 4: Equations in virtually abelian groups

Proposition 4.4.14. Let G be a virtually abelian group, with normal free abelian

subgroup Zk, and let H be any subgroup. Then H is coset-wise polyhedral.

Proof By the Second Isomorphism Theorem, H is itself virtually abelian, with

finite-index (free) abelian subgroup H ∩ Zk. Furthermore, c := [H : H ∩ Zk] ≤

[G : Zk] =: d. Choose a set of representatives {t1, . . . , tc} for the cosets of H ∩ Zk

in H, and extend this to a set of representatives {t1, . . . , tc, tc+1, . . . , td} for the

cosets of Zk in G. For each ti with i ≤ c, the set

Hti =
{
ht−1
i

∣∣h ∈ H, h ∈ Zkti} =
{
ht−1
i

∣∣h ∈ (H ∩ Zk) ti} = H ∩ Zk.

For i > c, Hti is empty. Now since H ∩Zk is free abelian, it is a polyhedral set when

viewed as a subset of Zk. The empty set is also polyhedral (as, say, the intersection

of a pair of disjoint hyperplanes). Hence H is coset-wise polyhedral. �

In light of Proposition 4.4.14, the following Theorem is in some sense a generalisation

of Theorem 3.3 of [45], namely that every subgroup has rational relative growth

series.

Theorem 4.4.15. Let G be virtually abelian, with normal free abelian subgroup Zk,

and let S be any finite weighted generating set. If V ⊆ Gn is coset-wise polyhedral,

then the weighted growth series SV⊆Gn,S(z) is a rational function.

Proof Fix a transversal T . For each t ∈ T n, let Pt ⊂ P n denote the set of n-

tuples of patterns of the form π = (π1, . . . , πn) where each πi ∈ Zkti. Let Uπ =

Uπ1×· · ·×Uπn ⊂ (S∗)n. Then by Theorem 4.4.9, the disjoint union
⋃
π∈Pt

Uπ consists

of exactly one n-tuple of geodesic representatives for each n-tuple in Zkt1×· · ·×Zktn.

We are only interested in n-tuples of elements which lie in the set V . Each element

of V lies in a unique product of cosets, so we partition V into such products:

V =
⋃
t∈Tn

{
(g1, . . . , gn) ∈ V | gi ∈ Zkti

}
=
⋃
t∈Tn

{
(g1, . . . , gn) ∈ Gn | (g1t

−1
1 , . . . , gnt

−1
n) ∈ Vt

}
.

(4.10)

71

Chapter 4: Equations in virtually abelian groups

Now, for a fixed t, (g1, . . . , gn) has a unique geodesic representative in the set Uπ,

for some π ∈ Pt determined by t. So the growth series of each component in the

union (4.10) is equal to the growth series of the set

⋃
π∈Pt

{(u1, . . . , un) ∈ Uπ | (u1φπ1Aπ1 , . . . , unφπnAπn) ∈ Vt} =
⋃
π∈Pt

Vt(φπAπ)−1∩Uπ.

Applying the map φπ to a component of the union yields the set

{(u1φ1, . . . , unφn) ∈ Uπφπ | (u1φπ1Aπ1 , . . . , unφπnAπn) ∈ Vt} = Vt (Aπ)−1∩Uπφπ.

Now by Propositions 4.2.3 and 4.2.5, this last set is polyhedral, and so has rational

growth. Since both T n and Pt are finite, the growth series of V is a finite sum of

growth series of sets of the form Vt (Aπ)−1 ∩ Uπφπ (each multiplied by z‖π‖ for the

appropriate π) and is therefore rational, finishing the proof. �

We can now prove the main result of this section.

Proof (of Theorem 4.4.3.) Let S denote an algebraic set. By Theorem 4.4.15, it

suffices to show that S is coset-wise polyhedral. By Lemma 4.3.7 we have

S =
⋃

(t1,...,tn)∈B

{
(h1t1, . . . , hntn) | (h1, . . . , hn) ∈ S(t1,...,tn)

}

=
⋃

(t1,...,tn)∈Tn

{
(h1t1, . . . , hntn) | (h1, . . . , hn) ∈ S(t1,...,tn)

}

where each S(t1,...,tn) is the solution set to some system of twisted equations in Zk

(and is empty for (t1, . . . , tn) /∈ B. By Lemma 4.3.19, each S(t1,...,tn) is a polyhedral

subset of Zkn, and thus S is coset-wise polyhedral as required. �

For clarity, we explicitly state the description of algebraic sets in terms of polyhedral

sets, which is a consequence of the proof of Theorem 4.4.3.

Corollary 4.4.16. Let G be a finitely generated virtually abelian group (with a

finite-index free abelian normal subgroup Zk for some k). Choose a transversal T .

72

Chapter 4: Equations in virtually abelian groups

Suppose S ⊂ Gn is an algebraic set. Then for each t = (t1, . . . , tn) ∈ T n, there

exists a polyhedral set St ⊆ Zkn such that S decomposes as a finite disjoint union:

S =
⋃
t∈Tn

{
(g1, . . . , gn) ∈ Zkt1 × · · · × Zktn

∣∣ (g1t
−1
1 , . . . , gnt

−1
n) ∈ St

}
.

4.4.3 Multivariate Growth Series

We now turn to the multivariate growth series (see Definition 4.4.2) and demonstrate

that for an algebraic set V , the multivariate growth seriesMV⊆Gn,S(z) is a holonomic

function.

Definition 4.4.17. For clarity, we also define the multivariate growth series of a

language. Let L be a language over some finite weighted alphabet A = {a1, . . . , ar}

(with weights denoted ‖ai‖) and let |w|i denote the number of occurrences of ai in

a word w ∈ L. The weighted multivariate growth series of L is the formal power

series ∑
w∈L

z
‖a1‖·|w|1
1 z

‖a2‖·|w|2
2 · · · z‖ar‖·|w|rr ∈ Q[[z1, z2, . . . , zr]].

Let z = (z1, . . . , zn) and ∂zi denote the partial derivative with respect to zi.

Definition 4.4.18. A multivariate function f(z) is holonomic if the span of the set

of partial derivatives

{∂j1z1∂
j2
z2
· · · ∂jnznf(z) | ji ∈ Z≥0}

over the ring of rational functions C(z) is finite-dimensional.

From this definition, we see that a function is holonomic if and only if it satisfies a

linear differential equation involving partial derivatives of finite order, and rational

coefficients, for each variable zi. Holonomic functions thus generalise the class of

algebraic functions. For a more complete introduction to this topic, see [49].

In recent work [9], Bishop extends results of Massazza [71] to show that a certain

class of formal languages has holonomic multivariate growth series. The follow-

ing Lemma follows easily from Proposition 4.3 of [9], and the fact that holonomic

functions are closed under algebraic substitution (Theorem B.3 of [49]).

73

Chapter 4: Equations in virtually abelian groups

Lemma 4.4.19. The weighted multivariate growth series of a polyhedral set (viewed

as a formal language over the alphabet consisting of standard basis vectors) is holo-

nomic.

As in the univariate case, we prove a more general statement about coset-wise poly-

hedral subsets.

Theorem 4.4.20. Let V ⊂ Gn be a coset-wise polyhedral set of tuples of elements of

a virtually abelian group G. Then the weighted multivariate growth series MV⊆Gn,S

is holonomic, with respect to any generating set S.

Proof Following the proof of Theorem 4.4.15, the coset-wise polyhedral set V

is represented by a finite disjoint union of polyhedral sets in Zkn, where k is the

dimension of the finite-index free abelian normal subgroup of G.

Lemma 4.4.19 implies that the weighted multivariate growth series of each of these

polyhedral sets (in the sense of Definition 4.4.17) is holonomic. These series will

involve kn variables, say

(z11, . . . , z1k, z21, . . . , z2k, . . . , zn1, . . . , znk).

To obtain the weighted multivariate growth series of V (in the sense of Definition

4.4.2), we need only set each zij = zi and multiply each of the finitely many growth

series by an appropriate constant to account for the contribution from each pattern

π. The closure properties of holonomic functions (Theorem B.3 of [49]) ensure that

the resulting growth series is still holonomic (with variables z1, . . . , zn corresponding

to the variables in the system of equations). �

We currently do not have an example of an algebraic set in a virtually abelian group

where the multivariate growth series is not rational. Given how many well-studied

subsets of virtually abelian groups seem to have rational growth, there is reason to

believe this might be rational as well. However, using Bishop’s result [9], we are

able to show that they are (at least) holonomic.

74

Chapter 4: Equations in virtually abelian groups

Corollary 4.4.21. An algebraic set in a virtually abelian group has holonomic

weighted multivariate growth series.

Proof The proof of Theorem 4.4.3 shows that any algebraic set is coset-wise poly-

hedral. �

75

Chapter 5

Equations in extensions

5.1 Introduction

This chapter is based on the work of the author [65].

The focus of this chapter will be the stability of the class of groups where solu-

tions to systems of equations can be expressed as EDT0L languages under various

constructions. We use these facts together to prove that groups that are virtually

direct products of hyperbolic groups belong to this class. As a corollary to this, we

also obtain the solutions to systems of equations in dihedral Artin groups can be

expressed as EDT0L languages.

Theorem 5.1.1 collects the main results in this chapter. The format used to express

solutions as words is explained in the preliminaries (Section 5.2).

Theorem 5.1.1. Let G and H be groups where solution languages to systems of

equations are EDT0L, with respect to normal forms ηG and ηH , respectively, and

EDT0L systems are constructible in NSPACE(f), for some f . Then in the following

groups, solutions to systems of equations are EDT0L, and an EDT0L system can be

constructed in non-deterministic f -space:

1. G o F , for any finite group F (Proposition 5.4.5);

2. G×H (Proposition 5.4.6);

76

Chapter 5: Equations in extensions

3. Any finite index subgroup of G (Proposition 5.5.3);

In the following groups, solutions to systems of equations are EDT0L, and an EDT0L

system can be constructed in NSPACE(n4 log n):

4. Any group that is virtually a direct product of hyperbolic groups (Corollary

5.6.9);

5. Dihedral Artin groups (Corollary 5.6.10).

If ηG and ηH are both quasi-geodesic or regular, then the same will be true for the

normal forms used in (1), (2) and (3). It is possible to choose normal forms for

the groups that are virtually direct products of hyperbolic groups in (4), and dihedral

Artin groups in (5) that are regular and quasi-geodesic.

Whilst an understanding of the set of solutions to a system of equations in a direct

product follows immediately from understanding the solutions to the projection

onto each of the groups in the direct product, showing that the language can be

expressed in the correct format requires more work, which we explore in Section 5.3.

This format is also required to prove Theorem 5.1.1(1).

The proof of Theorem 5.1.1(4) is based on Ciobanu, Holt and Rees’ proof of the

fact the satisfiability of systems of equations in these groups is decidable [22], in

a work that also looks at recognisable constraints. We show that the addition of

recognisable constraints to any system of equations preserves the property of having

an EDT0L solution language, and use this to show that the class of groups where

systems of equations have EDT0L solutions is closed under passing to finite index

subgroups.

Section 5.2 covers the preliminaries of the topics used. In Section 5.3, we prove

Proposition 5.3.7 on the parallel concatenation of words, which is an important part

of the proofs of the stability of groups where systems of equations have EDT0L solu-

tion languages under direct products (Proposition 5.4.6), and wreath products with

finite groups (Proposition 5.4.5). Section 5.4 covers the proofs of those propositions.

Section 5.5 includes the addition of recognisable constraints to equations with EDT0L

77

Chapter 5: Equations in extensions

solutions, and is used to prove that the property of systems of equations having

EDT0L solution languages passes to finite index subgroups, with respect to the

Schreier normal form, based on the normal form used in the finite index overgroup

(Proposition 5.5.3). Section 5.6 concludes with the proof that systems of equa-

tions in groups that are virtually direct products of hyperbolic groups have EDT0L

solution languages.

Notation 5.1.2. We introduce some notation to be used throughout the chapter.

• Let G be a group. We use FIN(G) to denote the class of groups that contain

G as a finite index subgroup;

• If L is a language over an alphabet Σ, we use Lc to denote the complement of

L within Σ∗.

5.2 Preliminaries

5.2.1 Dihedral Artin groups

We briefly define dihedral Artin groups. An application of Corollary 5.6.9 is that

solution sets to systems of equations in these groups form EDT0L languages.

Definition 5.2.1. A dihedral Artin group DAm, where m ≥ 2, is defined by the

presentation

〈a, b | aba · · ·︸ ︷︷ ︸
m

= bab · · ·︸ ︷︷ ︸
m

〉.

The following lemma is widely known. A brief sketch of the proof can be found in

[22], Section 2.

Lemma 5.2.2. A dihedral Artin group is virtually a direct product of free groups.

5.2.2 Schreier generators

We use Schreier generators, along with the normal form they induce, in order to

show that the class of groups where systems of equations have EDT0L languages of

78

Chapter 5: Equations in extensions

solutions is stable under passing to finite index subgroups. This subsection is based

on Section 1.4 of [56].

We start with the definition of Schreier generators.

Definition 5.2.3. Let G be a group, generated by a finite set Σ, H be a finite index

subgroup of G, and T be a right transversal of H in G. For each g ∈ G, let ḡ be the

(unique) element of T that lies in the coset Hg. The Schreier generating set for H,

with respect to T and Σ, is defined to be

Z = {txtx−1 | t ∈ T, x ∈ Σ}.

Whilst the fact that the Schreier generating set is a finite generating set for H is

widely known, we include a proof, as we later use ideas from the proof.

Lemma 5.2.4. Let G be a group, generated by a finite set Σ, H be a finite index

subgroup of G, and T be a right transversal of H in G. Let Z be the Schreier

generating set for H. Then Z is finite, and

H = 〈Z〉.

Proof We first show that

Z−1 = {tx−1tx−1
−1 | t ∈ T, x ∈ Σ}.

Let S = {tx−1tx−1
−1 | t ∈ T, x ∈ Σ}. Let g = txx−1t−1 = (txtx

−1
)−1 ∈ Z−1. Let

v = tx. Note that vx−1 = txx−1 = t. Then g = vx−1vx−1
−1 ∈ S, and so Z−1 ⊆ S.

Let g = tx−1tx−1
−1 ∈ S. Then g−1 = tx−1xt−1. Let v = tx−1. Then vx = t, and so

g−1 = vxvx−1 ∈ Z. We can conclude that S ⊆ Z−1.

The fact that Z is finite follows from the fact that T and Σ are finite. Let t0 be the

unique element of T ∩H. Let h ∈ H (this will usually be 1, but does not need to

be). Then t−1
0 ht0 = a1 · · · an, for some a1, . . . , an ∈ Σ±. Let ti = a1 · · · ai for each

79

Chapter 5: Equations in extensions

i ∈ {1, . . . , n}, and note tn = t0. We have

h = (t0a1t
−1
1)(t1a2t

−1
2) · · · (tn−1ant

−1
n).

Note that tiai+1 = a1 · · · aiai+1 = ti+1, and so

h = (t0a1t0a1
−1

)(t1a2t1a2
−1

) · · · (tn−1antn−1an
−1

).

Each of the parenthesised terms lie in Z if ai ∈ Σ, or S if ai ∈ Σ−1. Since S = Z−1,

we have h ∈ 〈Z〉. �

The proof of Lemma 5.2.4 induced a normal form for the finite index subgroup,

with respect to the Schreier generating set. We now give a formal definition of this

normal form.

Definition 5.2.5. Let G be a group, generated by a finite set Σ, H be a finite

index subgroup of G, and T be a right transversal of H in G. Let Z be the Schreier

generating set for H. Fix a normal form η for (G, Σ).

We define the Schreier normal form ζ for (H, Z), with respect to η, as follows. Let

h ∈ H, and suppose hη = a1 · · · an, where a1, . . . , an ∈ Σ±. Let t0 be the unique

element of T ∩H, and define ti = a1 · · · ai. Define hζ by

hζ = (t0a1t0a1
−1

)(t1a2t1a2
−1

) · · · (tn−1antn−1an
−1

). (5.1)

The fact that this indeed defines an element of H, and equals h is contained in the

proof of Lemma 5.2.4.

If the normal form from the finite index overgroup is regular or quasi-geodesic, then

the Schreier normal form is regular or quasi-geodesic, respectively. The latter re-

quires an additional lemma that we prove later, however we can show that regularity

is preserved without additional results.

Lemma 5.2.6. Let G be a group, generated by a finite set Σ, H be a finite index

subgroup of G, and T be a right transversal of H in G. Let Z be the Schreier

generating set for H. Fix a normal form η for (G, Σ).

80

Chapter 5: Equations in extensions

Let ζ be the Schreier normal form with respect to η, as in (5.1). If η is regular with

respect to Σ, then ζ is regular with respect to Z.

Proof We will extend ζ to the whole of G, with respect to the generating set

Z ∪ {txu−1 | u, t ∈ T, x ∈ Σ}. Let g ∈ G, and suppose t0gt
−1
0 η = a1 · · · an where

each ai ∈ Σ±. Define ζ̃ : G→ ((Z ∪ {txu−1 | u, t ∈ T, x ∈ Σ})±)∗ by

gζ̃ = (t0a1t0a1
−1

)(t1a2t1a2
−1

) · · · (tn−1ant
−1
0).

Note that ζ̃ is an extension of ζ. We will first show that ζ̃ is regular, then use an

intersection to show ζ is regular.

Consider a finite state automaton A that accepts im η, with set of states Q, start

state q0, and set F of accept states. We will construct a new finite state automaton

B to accept im ζ̃. Our set of states will be (Q×T ×{0, 1})∪{λ}, where λ is a new

state, our start state will be (q0, t0, 0), and λ will be our only accept state. For

each transition (p, a)→ q in A, and each t ∈ T , define the following transitions in

B:

((p, t, 0), a)→ (q, ta, 1),

((q, ta, 1), ta
−1

)→ (q, ta, 0).

For each q ∈ Q and t ∈ T , we also have a transition

((q, t, 1), t−1
0)→ λ.

By construction, whenever we read ta, we must follow with ta
−1

, unless we are going

to the accept state (at the end of the word), in which case we follow with t−1
0 . As a

result, B only accepts words in im ζ̃. Conversely, B accepts any word in im η after

its conversion into a word in im ζ̃, and we can therefore conclude that B accepts

im ζ̃.

We have that im ζ = im ζ̃ ∩ (Z±)∗. As an intersection of regular languages, this is

regular. �

81

Chapter 5: Equations in extensions

5.3 EDT0L languages about a distinguished letter

Recall that we denote a solution (g1, . . . , gn) to a system of equations in a group

G using the word (g1η)# · · ·#(gnη). In order to show that groups where systems of

equations have EDT0L solution languages are closed under certain types of extension

(such as direct products), we are required to prove Proposition 5.3.7, which allows

us to concatenate in parallel two EDT0L languages where every word is of the form

u0# · · ·#un.

The following lemma allows us to use different symbols for each # that delimits the

group elements, rather than the same one each time. The proof is joint work with

Alex Evetts.

Lemma 5.3.1. Let n ∈ Z>0, {#, #1, . . . , #n} be a set of formal symbols, and

∆ be an alphabet, such that #, #1, . . . , #n /∈ ∆. Let A be a set of n-tuples of

words over ∆. Define languages L and M over ∆ ∪ {#} and ∆ ∪ {#1, . . . ,#n},

respectively, by

L = {w1#w2# · · ·#wn | (w1, . . . , wn) ∈ A}

M = {w1#1w2#2 · · ·#n−1wn#n | (w1, . . . , wn) ∈ A}.

Let f : Z≥0 → Z≥0. Then

1. The language L is EDT0L if and only if M is;

2. There exists an EDT0L system for L that is constructible in NSPACE(f) if

and only such an EDT0L system for M exists.

Proof Applying the monoid homomorphism #1, . . . , #n−1 7→ #, #n 7→ ε maps

M to L, so the backward directions of (1) and (2) follow by Theorem 3.3.2.

Suppose L is EDT0L. We will first show that

N := {w1#1w2#2 · · ·#n−1wn | (w1, . . . , wn) ∈ A}

is EDT0L. Consider an EDT0L system HL = (Σ t {#}, C, ⊥, R) that accepts

82

Chapter 5: Equations in extensions

L, and that is constructible in NSPACE(f). Note that we can assume our start

word is a single letter, instead of a word ω by adding an additional letter ⊥, and

preconcatenating the rational control with an endomorphism ⊥7→ ω. Let B ⊆

End(C∗) be an alphabet of R.

We will construct a new EDT0L system from HL which will accept M . Let Cind =

{ci,i+1,...,j | c ∈ C, i, j ∈ {1, . . . , n}} be the set of symbols obtained by indexing

elements of C with a section of the sequence (1, . . . , n), including the empty

sequence (if i > j). By convention, we will consider a letter c ∈ C indexed by the

empty sequence to be equal to c, and so C ⊆ Cind. Our extended alphabet will be

Cind. Let φ ∈ B. Define Φφ ⊆ End(Cind) to be the set of all endomorphisms ψ

defined to by

ci,...,jψ = x
i11,...,i1k1
1 x

i21,...i2k2
2 · · ·xir1,...,irkrr ,

where x1 · · ·xr = cφ, and (i11, . . . , irkr) = (i, . . . , j). Note that some (or all)

of the sequences may be empty. Let R̄ be the rational subsets of endomorphisms

of C∗ind obtained from R by replacing each φ ∈ B with Φφ. The EDT0L system

HM = (Σ ∪ {#1, . . . , #n, Cind, ⊥1,...,n, R̄) will only accept words of the form

a
i11,...,i1k1
1 · · · air1,...,irkrr , where (i11, . . . , irkr) = (1, . . . , n), and a1 · · · ar ∈ L. How-

ever, since our alphabet is Σ∪{#1, . . . , #n}, it can only accept words over that al-

phabet, which are precisely words of the form w0#1 · · ·#nwn, where w1# · · ·#wn ∈

L, and thus will accept M .

It now remains to show HM is constructible in NSPACE(f). It doesn’t require extra

memory beyond a constant to add ⊥ as the start symbol. To write down the new

extended alphabet Cind, we just proceed as we would when constructing HL, but

whenever we write a symbol c, we also write all of the indexed versions. To do this

we just need to record the letter c we are on, along with the previous index written,

so this is still possible in NSPACE(f).

To output R̄, we simply proceed with writing down the finite state automaton that

accepts R, and replace each edge labelled by φ ∈ B with a set of edges between the

same states, labelled with each ψ ∈ Φφ. To do this, we can compute Φφ, store it,

and remove each ψ ∈ Φφ from the memory as we write it. This will require n times

83

Chapter 5: Equations in extensions

as much memory as writing down R, but since n is a constant, it is constructible in

NSPACE(f). �

We introduce the concept of a (#1, . . . , #n)-separated EDT0L system, which is

key in the proof of Proposition 5.3.7.

Definition 5.3.2. Let Σ be an alphabet, and #1, . . . , #n ∈ Σ. A (#1, . . . , #n)-

separated EDT0L system is an EDT0L system H, with a start word of the form

ω0#1ω1#2 · · ·#nωn, where ωi ∈ (Σ\{#1, . . . , #n})∗ for all i, and such that #iφ
−1 =

{#i}, for all i, and every φ in the rational control.

We now show that the class of (#1, . . . , #n)-separated EDT0L languages is stable

under finite unions.

Lemma 5.3.3. Let L and M be languages over an alphabet Σ that are accepted by

(#1, . . . , #n)-separated EDT0L systems. Then

1. The language L∪M is accepted by a (#1, . . . , #n)-separated EDT0L system

M;

2. If L and M are accepted by EDT0L systems constructible in NSPACE(f), for

some f : Z≥0 → Z≥0, then M is also constructible in NSPACE(f).

Proof LetHL = (Σ, CL, ω0#1 · · ·#nωn, RL) andHM = (Σ, CM , ν0#1 · · ·#nνn, RM)

be (#1, . . . , #n)-separated EDT0L systems accepting L and M , respectively, that

are both constructible in NSPACE(f). We will assume without loss of generality

that CL\Σ and CM\Σ are disjoint. Let C = CL ∪ CM ∪ {⊥0, . . . , ⊥n}, where each

⊥i is a symbol not already used. For each φ ∈ RL, define φ̄ ∈ End(C∗) by

cφ̄ =

 cφ c ∈ CL
c c /∈ CL.

Define φ̄ for each φ ∈ RM analogously. Let R = {φ̄ | φ ∈ RL ∪RM}, and note that

R is rational. Define ψL, ψM ∈ End(C∗) by

⊥i ψL = ωi, ⊥i ψM = νi,

84

Chapter 5: Equations in extensions

for all i. We can conclude that L ∪ M is accepted by (Σ, C, ⊥0 #1 · · ·#n ⊥n
, {ψL, ψM}R).

Since RL and RM can be constructed in NSPACE(f), it follows that RL ∪RM , and

hence R can also be constructed in NSPACE(f). The same follows for C = CL∪CM ,

and we can conclude that the EDT0L system is constructible in NSPACE(f). �

Before we can start the proofs of Lemma 5.3.5 and Proposition 5.3.7, we need the

concept of a derivation within an EDT0L system.

Definition 5.3.4. LetH = (Σ, C, ω, R) be an EDT0L system accepting a language

L. Let B ⊆ End(C∗) be an alphabet of R. A derivation of a word u ∈ L is a finite

sequence (ω = ν0, . . . , νn = u) of words in C∗, such that there is a finite sequence

(φ1, . . . , φn) of elements of B, with φ1 · · ·φn ∈ R, and νi = ωφ1 · · ·φi. We say the

length of the derivation is n+ 1 (the length of the sequence).

Lemma 5.3.5. Let L be a language accepted by an EDT0L systemH = (Σ, C, ω, R),

such that every word in L contains precisely one occurrence of the letter # ∈ Σ.

Then

1. There is a (#)-separated EDT0L system M that accepts L;

2. If H is ($1, . . . , $n)-separated, for some $1, . . . , $n ∈ Σ, then so is M;

3. If H is constructible in NSPACE(f) for some f : Z≥0 → Z≥0, then so is M.

The proof of Lemma 5.3.5 is an induction on the length of derivations of words over

C that contain the symbol #. Let B ⊆ End(C∗) an alphabet of R. We replace

symbols c ∈ C that are mapped to # by endomorphisms in B, and move the # left

within the derivation until # is in the start word. Our strategy is to split H into

finitely many EDT0L systems, whose languages union to make L. Each of these

languages is constructed to have the property that there is a unique element c ∈ C

such that cφ = σ#τ , for some σ, τ ∈ C∗ and φ in the rational control.

Proof Step 1: Preprocessing.

Let B ⊆ End(C∗) be an alphabet of R. We will first show that we can assume that

all elements of Σ are fixed by elements of B. Let ∆ be the set of all letters in Σ

85

Chapter 5: Equations in extensions

not fixed by elements of B. Make a copy ca of each a ∈ ∆, and add each of these

copies to C. We will initially assume these copies are fixed by elements of B. Define

θ ∈ End(C∗) by aθ = ca for all a ∈ ∆. Replace each occurrence of each a ∈ ∆

within the start word with ca. Replace each φ ∈ B by φθ. Finally, let ψ ∈ End(C∗)

be defined by caψ = a for all a ∈ ∆, and redefine the rational control to be Rψ.

Now all letters in Σ are fixed by elements of B. Note that this preserves the fact

that H is ($1, . . . , $n)-separated.

We now add a new symbol F to C, which all elements of B (and therefore R) will

fix. Initially, F will be unused; cφ 6= F for all c ∈ C, however, we will later modify

H, or other EDT0L systems obtained from H to use F . This letter will be used as a

‘fail symbol’. That is, if φ ∈ End(C∗) is such that ωφ contains F , for some ω ∈ C∗,

then for all ψ ∈ End(C∗) such that φψ ∈ R, we will have that ωφψ contains F , and

so ωφψ /∈ Σ∗, and will therefore not be accepted by H.

Step 2: Splitting H into finitely many EDT0L systems.

Suppose φ ∈ B is such that there exists c ∈ C and θ, ψ ∈ End(C∗), satisfying

θφψ ∈ R, cφ = σ#τ for some σ, τ ∈ C∗, and cφψ ∈ Σ∗. Let X be the set of all such

φ ∈ B, and for each φ ∈ X, let Dφ be the set of letters in C\{#} which φ maps to

#. For each φ ∈ X, we will define a new EDT0L system Hφ as follows. For each

φ ∈ X, define φ̄ ∈ End(C∗) by

dφ̄ =

 F d ∈ Dφ

dφ d /∈ Dφ.

Let Hφ be the EDT0L system obtained from H by replacing each ψ ∈ X\{φ} with

ψ̄. Note that each system Hφ is ($1, . . . , $n)-separated.

By construction, we have that for all φ ∈ X, L(Hφ) ⊆ L. Let w ∈ L. Since endo-

morphisms in B never map # to ε (as Σ is fixed pointwise by every endomorphism

in the rational control), it follows that w can only be derived using a derivation

involving one φ ∈ X mapping a letter in C\{#} to # (as w contains precisely one

occurrence of #). Note that the φ may occur again within the derivation, but only

86

Chapter 5: Equations in extensions

once will it map a letter (other than #) to #. Thus w ∈ Hφ, and we have shown

L =
⋃
φ∈X

L(Hφ).

Step 3: Induction.

Let A be the collection of the EDT0L systems Hφ. For each G ∈ A, let CG be the

extended alphabet, BG be a the alphabet of RG of G, and let nG be the minimal

length of a derivation of a word over the extended alphabet containing # in G. Let

n = maxG∈A nG.

Note that if we redefine A, we will assume n has been updated accordingly. We will

proceed by induction on n. If n = 0, then # appears in the start words of every

G ∈ A, and so there is nothing to prove.

Let k > 0, and inductively assume that the result holds whenever n < k. Suppose

n = k. Let G ∈ A be such that nG = k. Let φ be the unique element of BG, that

G = Hφ. Let Ψ be the set of all ψ ∈ B, such that dψ contains a letter in Dφ, for

some d ∈ C.

We will redefine the rational control RG of HG as follows. Firstly, enlarge BG by

adding θψ,φ for each ψ ∈ Ψ, where θψ,φ = ψφ. Let R0 be the set obtained from RG
by replacing each occurrence of ψφ with θψ,φ, for all ψ ∈ Ψ and φ ∈ Φ. Note that

this corresponds to finitely many preimages of free monoid endomorphisms, and so

the set R0 is indeed rational. We now redefine RG to be RG ∪R0.

Note one d ∈ C that was mapped by some ψ ∈ Ψ to σcτ , for some σ, τ ∈ C∗ and

c ∈ Dφ, will now mapped by some θψ,φ directly to ρ#µ, for some ρ, µ ∈ C∗.

We have now reduced nG by 1, however we have potentially broken the hypothesis

that there is a unique endomorphism in BG that maps some c ∈ CG to σ#τ for any

σ, τ ∈ C∗. We can apply the same process we used to construct the EDT0L systems

Hφ from H to G, to create a number of new EDT0L systems, the union of whose

languages will be L(G), but such that for each of these EDT0L systems G ′, we have

that nG′ = k − 1. We can replace G in A with all of these new EDT0L systems.

87

Chapter 5: Equations in extensions

Applying this method to all G ∈ A with nG = k, will cause n to equal k− 1, and so

the result follows by induction.

Step 4: Space complexity.

First note that in the initial system, the length of the shortest derivation of a word

involving # will be at most |C|. As splitting H into the finitely many Hφ does

not affect this number, we have that n ≤ |C| before any iterations of the induction

hypothesis are applied.

It therefore remains to consider the space complexity of each iteration, along with

the space complexity of splitting into finitely many systems Hφ.

Starting from H (or any G ∈ A), constructing the EDT0L systems Hφ can be done

as follows. We first compute the set X, which can be done by looking at each

endomorphism in B. Following this, we choose a φ ∈ X, and construct Hφ the same

way we can construct H, except using φ̄ instead of φ for all φ ∈ X\{φ}. This can

be done in NSPACE(f), as we only need to remember X, and |X| ≤ |B|. We then

remove φ from X, and continue for each remaining φ ∈ X. This can all therefore

be done in NSPACE(f).

We now consider the complexity of the construction in the induction step: replacing

RG with RG∪R0. To do this, we simply need that show that regular languages that

are unions of regular languages constructible in NSPACE(f), or preimages of regular

languages under free monoid homomorphisms that constructible in NSPACE(f), are

also definable in NSPACE(f), which follows by Lemma 2.4.3. �

Using Lemma 5.3.1, followed by Lemma 5.3.5 n times (once for each #i), we can

prove the following.

Lemma 5.3.6. Let L be an EDT0L language, such that every word in L contains

precisely n occurrences of the letter #, where n ∈ Z≥0. Let f : Z≥0 → Z≥0. Then

1. There is a (#, . . . , #)-separated EDT0L system H that accepts L.

2. If an EDT0L system for L is constructible in NSPACE(f), then H is con-

structible in NSPACE(f).

88

Chapter 5: Equations in extensions

Proof By Lemma 5.3.1, it suffices to show that

N = {u0#1 · · ·#nun | u0# · · ·#un ∈ L}

is EDT0L, and the system is constructible in NSPACE(f). The result now follows

by Lemma 5.3.5 used n times (once for each #i). �

We are now able to prove the main result of this section.

Proposition 5.3.7. Let L and M be EDT0L languages, such that every word in

L ∪M contains precisely n occurrences of the letter #. Let f : Z≥0 → Z≥0. Then

1. The language

N = {u0v0# · · ·#unvn | u0# · · ·#un ∈ L, v0# · · ·#vn ∈M},

is EDT0L;

2. If EDT0L systems for L and M are constructible in NSPACE(f), then an

EDT0L system for N is constructible in NSPACE(f).

Proof By Lemma 5.3.6, we have that L and M are accepted by EDT0L systems

HL and HM , with start words ω0#1 · · ·#nωn and ν0#1 · · ·#nνn, respectively, such

that nothing other than #i is mapped to #i within both HL and HM . Suppose also

that these systems are constructible in NSPACE(f). Let CL and CM be the extended

alphabets of HL and HM , and let ΣL and ΣM be the terminal alphabets. Without

loss of generality assume CL\ΣL and CM\ΣM are disjoint. Let RL and RM be the

rational controls, and let BL and BM be alphabets of RL and RM , respectively.

Let Σ = ΣL ∪ ΣM , and let C = CL ∪ CM . For each φ ∈ BL, define φ̄ ∈ End(C∗) by

cφ̄ =

 cφ c ∈ CL
c c /∈ CL.

Define φ̄ for each φ in BM analogously, and extend the bar notation to composition of

functions, that is, φψ = φ̄ψ̄. LetR = {φ̄ | φ ∈ RL∪RM}, and note thatR is a ratio-

89

Chapter 5: Equations in extensions

nal set. Thus, N is accepted by the EDT0L system (Σ, C, ω0ν0#1 · · ·#nωnνn, R),

as required.

Suppose there exist EDT0L systems for L andM , which are constructible in NSPACE(f).

By Lemma 5.3.6, HL and HM are also constructible in NSPACE(f). We can con-

struct C with the memory required to construct CM and CL. The set {φ̄ | φ ∈ BL}

is constructible in NSPACE(f), by following the construction of RL, but writing a

φ̄ instead of a φ, for each occurrence of φ ∈ BL. By symmetry, {φ̄ | φ ∈ BM} is

constructible in NSPACE(f). Since R is the union of these sets, we can construct R

in NSPACE(f) by Lemma 2.4.3. �

5.4 Equations in extensions

This section shows that the class of groups where systems of equations have EDT0L

solution languages is closed under various extensions, including wreath products with

finite groups and direct products. These facts are used in the proof of Theorem 5.6.8

on groups that are virtually a direct product of hyperbolic groups.

We can use Lemma 4.3.11 to show that passing to the Schreier normal form also

preserves the property of being quasi-geodesic.

Lemma 5.4.1. Let G be a group, generated by a finite set Σ, H be a finite index

subgroup of G, and T be a right transversal of H in G, containing 1. Let Z be the

Schreier generating set for H. Fix a normal form η for (G, Σ). If η is quasi-geodesic

with respect to Σ, then the Schreier normal form with respect to η is quasi-geodesic

with respect to the Schreier generators.

Proof Let ζ be the Schreier normal form for H, with respect to η. We will show

that the normal form from Remark 4.3.8, inherited from ζ, is quasi-geodesic. The

result will then follow by the backward direction of Lemma 4.3.11. Since η is quasi-

geodesic, there exists λ > 0, such that |gη| ≤ λ|g|(G,Σ) + λ for all g ∈ G.

Let ξ denote the normal form from Remark 4.3.8, inherited from ζ, with respect to

the transversal T . Let w ∈ (Σ±)∗ be geodesic. We have that there exists v ∈ im η,

90

Chapter 5: Equations in extensions

such that v =G w, and |v| ≤ λ|w| + λ. We also have that there exists t0 ∈ T such

that vt0 represents an element of H. We can then convert this into Schreier normal

form to give a word u. Note that |u| ≤ |vt0|.

We also have that there exists t1 ∈ T , such that ut1 =G w. Note that ut1 ∈ im ξ.

Combining our inequalities that relate u, v and w, gives:

|ut1| ≤ |vt0t1| = |v|+ 2 ≤ λ|w|+ 2λ.

So ξ is quasi-geodesic, with respect to a constant 2λ. The result now follows by

Lemma 4.3.11. �

In order to prove our results about wreath products and direct products, we need

some normal forms on groups made using these constructions.

Remark 5.4.2. LetH1, . . . , Hk be groups, with finite generating sets ΣH1 , . . . , ΣHk ,

and normal forms ηH1 , . . . , ηHk , respectively. Let G =
∏k

i=1Hi. We will use

Σ = ΣH1 t · · · t ΣHk as a generating set for G. Define the η : G→ (Σ±)∗ by

(h1, . . . , hk)η = (h1ηH1) · · · (hkηHk).

Since concatenations of regular languages are regular, if every ηHi is regular, then η

is a regular normal form.

In addition, the length of any element g ∈ G with respect to Σ is just the sum of

the lengths of the projection of g to each Hi, and from this it follows that if every

ηHi is (quasi)geodesic, then so is η.

Remark 5.4.3. Let H be a group, and K be a finite group. Let ΣH be a generating

set for H, and ηH be a normal form with respect to ΣH . We define a generating set

and normal form for H oK, using ΣH and ηH . Note that H oK contains
∏n

i=1Hi as

a finite index subgroup, where n ∈ Z>0, and Hi
∼= H for all i. We endow

∏n
i=1Hi

with a generating set and normal form using Remark 5.4.2. After this, we can use

the generating set and normal form from Remark 4.3.8 for H oK, with respect the

generating set and normal form of
∏n

i=1 Hi.

91

Chapter 5: Equations in extensions

Since the two constructions we have used to produce a normal form for H oK preserve

the properties of regular and quasi-geodesic, if ηH is regular or quasi-geodesic, then

so is the normal form on H oK.

We show that the class of groups with EDT0L solutions to systems of equations is

closed under direct products, and wreath products with finite groups. We start with

the latter. We refer the reader to [56] for the definition of a wreath product.

We first consider the properties of the normal forms we will be using.

Lemma 5.4.4. Let H and ηH be as in Remark 5.4.3. If ηH is regular or quasi-

geodesic, then the normal form on H o K from Remark 5.4.3 will be regular or

quasi-geodesic, respectively.

Proof Recall that the normal form in Remark 5.4.3 is created by using the normal

form for direct products (Remark 5.4.2), followed by the normal form for finite

extensions 4.3.8. Since both of these constructions preserve the properties regular

and quasi-geodesic, the result follows. �

We can now show that equations in wreath products have the desired properties.

Proposition 5.4.5. Let H be a group such that solutions to systems of equations

with respect to a normal form ηH are EDT0L in NSPACE(f), where f : Z≥0 → Z≥0.

Let K be a finite group. Then

1. Solutions to systems of equations in H o K are EDT0L in NSPACE(f), with

respect to the normal form from Remark 5.4.3;

2. If ηH is regular or quasi-geodesic, then the normal form on H oK will be regular

or quasi-geodesic, respectively.

Proof First note that (2) follows from Lemma 5.4.4.

Let A be the finite set that K acts on, and define H oK with respect to this action.

Let H1, . . . , H|A| be the isomorphic copies of H. Using Proposition 4.3.9, it suffices

to show that that solutions to systems of Ω-twisted equations in G :=
∏|A|

i=1Hi are

92

Chapter 5: Equations in extensions

EDT0L in NSPACE(f), with respect to the normal form from Remark 5.4.2, where

Ω is the set of automorphisms defined by permuting the His.

Consider a system E of Ω-twisted equations in G in n variables. As every element

of G can be written in the form h1 · · ·h|A|, where hi ∈ Hi for all i, for each variable

X in E , we can define new variables Xi over Hi for each i, by X = X1 · · ·X|A|. As

the elements of Hi commute with the elements of Hj for each i 6= j, we can view

any (untwisted) equation in G as a system of |A| equations in H, each with disjoint

set of variables, by projecting the original equation onto Hi. The fact that these

sets are disjoint follows from the fact that the ith equation in the system will be the

projection to Hi, whose variables will be of the form Xi, for some original variable

X.

Let Φ ∈ Ω, and let σ ∈ Sn be the permutation induced by the action of Φ. Then

XΦ = (X1 · · ·X|A|)Φ = X1σ · · ·X(|A|)σ. It follows that any twisted equation in G

can be viewed as a system of |A| equations in H, again using projections to each

Hi. The variables of each of the equations will no longer be disjoint, however. It

follows that a system of twisted equations in G projects to a system of equations in

H. Thus, there exists a system F of equations in H with solution set SF , such that

F has |A|n variables, and each variable is assigned an index in {1, . . . , |A|}, such

that precisely n variables have each index, and such that the solution language of E

is equal to

{x11 · · ·x1|A|# · · ·#xn1 · · ·xn|A| | (x1i, . . . , xni) ∈ SF with each variable indexed by i for all i}.

From our assumptions, we have that the solution language to F is EDT0L, and can

be constructed in NSPACE(f). It follows that the language

Li = {x1i# · · ·#xni | (x1i, . . . , xni) ∈ SF with each variable indexed by i}

is EDT0L for each choice of i, and constructible in NSPACE(f), using Lemma 5.3.1,

and then taking the image under an appropriate free monoid endomorphism with

Theorem 3.3.2. Proposition 5.3.7 then shows that the solution language to E is

EDT0L in NSPACE(f). �

93

Chapter 5: Equations in extensions

We conclude this section with the proof that direct products also preserve the prop-

erty of having EDT0L solution languages.

Proposition 5.4.6. Let f : Z≥0 → Z≥0. Let G and H be finitely generated groups

where solutions to systems of equations are EDT0L in NSPACE(f). Then

1. The same holds in G×H, with respect to the normal form from Remark 5.4.2;

2. If the normal forms on G and H are regular or quasi-geodesic, then the normal

form on G × H will be regular or quasi-geodesic, respectively, with respect to

the union of the generating sets for G and H.

Proof Part (2) follows from Remark 5.4.2.

Let ΣG be a finite generating set for G, and ΣH be a finite generating set for H.

We will use Σ = ΣG t ΣH as our generating set for G × H. Consider an equation

ω = 1 in G × H. Let X be the set of variables in ω. We have that every element

of G × H can be expressed in the form gh for some g ∈ G and h ∈ H. We can

reflect this in the variables as well, by defining new variables XG over G and XH

over H, for each X ∈ X , such that X = XGXH . Let XG = {XG | X ∈ X}, and

XH = {XH | X ∈ X}.

As elements of G commute with elements of H, we can rearrange ω = 1 into the

form νζ = 1, where ν ∈ (Σ±G ∪ X
±
G)∗ and ζ ∈ (Σ±H ∪ X

±
H)∗. Consider a potential

solution (g1h1, . . . , gnhn) to ω = 1, where each gi ∈ G and each hi ∈ H. We have

that this is a solution if and only if (g1, . . . , gn) is a solution to the equation ν = 1,

and (h1, . . . , hn) is a solution to the equation ζ = 1. Note that these are equations

in G and H, respectively.

Let E be a system of equations in G × H. It follows that there exist systems of

equations in G and H with solution sets SG and SH , such that the solution set to E

equals

{(g1h1, . . . , gnhn) | (g1, . . . , gn) ∈ SG, (h1, . . . , hn) ∈ SH}.

If LG and LH are EDT0L solution languages corresponding to these systems in G

94

Chapter 5: Equations in extensions

and H, respectively, it follows that the solution language to E equals

{ω0ν0# · · ·#ωnνn | ω0# · · ·#ωn ∈ LG, ν0# · · ·#νn ∈ LH}.

The result now follows by Proposition 5.3.7. �

5.5 Recognisable constraints and finite index sub-

groups

This section is used to show Proposition 5.5.3, that is, that the class of groups where

systems of equations have EDT0L solutions is closed under passing to finite index

subgroups. We use recognisable constraints to show this fact, by first proving that

the addition of recognisable constraints to a system of equations with an EDT0L

solution set does not change the fact that the solution set is EDT0L with respect to

the ambient normal form of the group. We can then use the fact that finite index

subgroups are recognisable, however the resulting language will be expressed as

words over the generators for the ambient group. Expressing solutions to the finite

index subgroup as words over one of its own generating sets, such as the Schreier

generators, requires additional arguments.

We start by showing that the addition of recognisable constraints to systems of

equations in a group preserves the property that all such systems have EDT0L

solution languages.

Proposition 5.5.1. Let G be a finitely generated group such that solutions to sys-

tems of equations are EDT0L in NSPACE(f) with respect to some normal form η,

where f : Z≥0 → Z≥0. Then solutions to systems of equations in G with recognisable

constraints are EDT0L in NSPACE(f), with respect to η.

Proof Let Σ be a finite generating set for G, and fix a normal form η for (G, Σ)

such that solution languages to systems of equations are EDT0L. Consider a system

of equations E with recognisable constraints in G with n variables. Let R1, . . . , Rn

95

Chapter 5: Equations in extensions

denote the constraints. Let L be the solution language to E with the constraints

removed. Let π : Σ∗ → G be the natural homomorphism. Note that

S = (R1π
−1)#(R2π

−1)# · · ·#(Rnπ
−1)

is a regular language. By Theorem 3.3.2, L∩S is EDT0L, and if an EDT0L system

for L is constructible in NSPACE(f), then one for L ∩ S is also constructible in

NSPACE(f). As L ∩ S is the solution language to E , the results follow. �

Since finite index subgroups are examples of recognisable sets, we can show the

following.

Lemma 5.5.2. Let f : Z≥0 → Z≥0. Let G be a finitely generated group where

solutions to systems of equations are EDT0L in NSPACE(f), with respect to some

normal form η, and let H be a finite index subgroup of G. Let E be a system of

equations in G. Then

1. the language of all solutions to E that lie in H forms an EDT0L language,

with respect to the normal form η restricted to H;

2. The EDT0L system for this language is constructible in NSPACE(f).

Proof In order to restrict our solutions to H, we add the constraint that every

variable lies in H, which is a recognisable subset of G. The results now follow from

Proposition 5.5.1. �

Proposition 5.5.3. Let f : Z≥0 → Z≥0. Let G be a group where solutions to systems

of equations are EDT0L in NSPACE(f), with respect to a normal form η. Then the

same holds in any finite index subgroup of G with respect to the Schreier normal

form, inherited from η.

Proof Let X be a finite generating set for G, T be a right transversal for H, and

Z be the Schreier generating set for H. Let ζ be the Schreier normal form for H.

Fix a system E of equations in H. This can be considered as a system of equations

in G, with the restriction that the solutions must lie in H. Let L be the solution

96

Chapter 5: Equations in extensions

language to E when expressed as words over G using the normal form η; that is

L = {(g1η)# · · ·#(gnη) | (g1, . . . , gn) is a solution to E}.

Note that we require that solutions lie in H, as E is a system over H. By Lemma

5.5.2, L is an EDT0L language over an alphabet Σ. Let H = (Σ, C, ω, R) be an

EDT0L system for L that is constructible in NSPACE(f). Let B ⊆ End(C∗) be the

alphabet of R.

By Lemma 5.3.6, we can assume our start word is of the form ω1# · · ·#ωn. By

adding new letters ⊥1 · · · ⊥n to C, and preconcatenating the rational control by the

endomorphism defined by ⊥i 7→ ωi for all i, we can assume our start word is of the

form ⊥1 # · · ·# ⊥n. Note that as we can easily construct our new start word from

our existing one, this will not affect space complexity.

We will construct a new EDT0L system from H. Our extended alphabet will be

letters in C transversal element t ∈ T . Define

Cind = {ct,a | c ∈ C, t ∈ T, a ∈ X±} ∪ {⊥1, . . . , ⊥n}.

Our alphabet will be Σind ∪ {#} = {at,a | a ∈ X±, t ∈ T} ∪ {#}. Our start word

will be ⊥1 # · · ·# ⊥n. We define our rational control as follows. For each φ ∈ B,

define Φφ to be the set of all ψ ∈ End(C∗ind) such that

ct,aψ = xt1,b11 · · ·xtk,bkk ,

where cψ = x1 · · ·xk, with every xi ∈ C, each ti ∈ T , t1 = t, and tibi = ti+1. Let R1

be the rational set obtained by replacing each occurrence of φ ∈ B with the finite

set Φφ. Let t0 be the unique element in T ∩H. Let Ψ ⊆ End(C∗ind) be the set of all

ψ defined by

⊥i ψ =⊥t0, aii ,

for some a1, . . . , an ∈ X±. Define G = (Σind, Cind, ⊥1 # · · ·# ⊥n, ΨR1). By

construction, G accepts words in L, where each letter, excluding #, has an index

(t, a) ∈ T × X±, and such that for each indexed word w = at1,a11 · · · atk,akk , the

97

Chapter 5: Equations in extensions

following hold:

1. t1 = t0;

2. tiai = ti+1 for all i.

To show that the solution language to E is EDT0L with respect to ζ, it remains to

apply the free monoid homomorphism θ : Σ∗ind → (Z± ∪ {#})∗ to L(G), defined by

at,a 7→ atat
−1
.

It now remains to show that this EDT0L system can be constructed in NSPACE(f).

By Theorem 3.3.2, applying the homomorphism θ does not affect the space com-

plexity, so it is sufficient to show that G is constructible in NSPACE(f). The number

of indices we use is 2|X||T |, which is constant, as it is based only on the group H. It

follows that we can write down Cind and Σind in NSPACE(f). The set Ψ is again only

based on |X|, and so to show our rational control is constructible in NSPACE(f), it

suffices to prove that R1 is.

Note that |Φφ| is again only based on |X||T |, and so is constant. We construct

R1 by proceeding with the procedure we used to construct R, except whenever we

would add an edge labelled φ ∈ B between two states, we add edges labelled with

all of Φφ between the same states. We can compute Φφ each time we need it, so we

need only record the information we used to construct R. We can conclude that G

is constructible in NSPACE(f), and so the language of solutions to E is EDT0L in

NSPACE(f). �

5.6 Virtually direct products of hyperbolic groups

In this section, we show that solution languages to systems of equations in groups

that are virtually direct products of hyperbolic groups are EDT0L. We adapt the

method that Ciobanu, Holt and Rees use to show that the satisfiability of systems

of equations in these groups is decidable [22]. For an introduction to hyperbolic

groups, we refer the reader to [56], Chapter 6.

98

Chapter 5: Equations in extensions

We start with some lemmas needed to prove this result. The following lemma

gives an embedding as a finite index subgroup of a group that is virtually a direct

product of hyperbolic groups, into a direct product of groups where equations are

better understood.

Lemma 5.6.1 ([22], Lemma 3.5). Let G be a group that contains a group of the

form K1 × · · · ×Kn as a finite index normal subgroup, such that every conjugate of

each of the subgroups Ki lies in the set {K1, . . . , Kn}. Then

1. If the groups Ki are all conjugate to each other, then G is isomorphic to a

finite index subgroup of J o P , where J ∼= NG(K1)/(K2 × · · · ×Kn) contains a

finite index subgroup isomorphic to K1, and P is finite;

2. Suppose K1, . . . , Kk are representatives of the conjugacy classes of K1, . . . , Kn

within G. Then G is isomorphic to a finite index subgroup of a direct product

W1 × · · · ×Wk, where Wi = Ji o Pi, Ji contains Ki as a finite index subgroup,

and Pi is finite, for all i.

We define a normal form for groups that are virtually direct products.

Remark 5.6.2. Let G be a group that has a finite index subgroup of the form

K1 × · · · × Kn. Fix a finite generating set ΣKi , and normal form ηKi for each Ki.

Using Lemma 5.6.1, G embeds as a finite index subgroup of W1 × · · · ×Wk, where

Wi = Ji o Pi, Ki embeds as a finite index subgroup of Ji, and Pi is finite.

• We start by defining a generating set and normal form for each Ji. Since Ji

contains Ki as a finite index subgroup, we can use the generating set and

normal form from Remark 4.3.8, induced by ΣKi and ηKi . We will denote this

generating set and normal form using ΣJi and ηJi , respectively;

• Using ΣJi and ηJi , we can use the generating set and normal form defined

in Remark 5.4.3 to define a normal form for each Wi = Ji o Pi. Using these

generating sets and normal forms, Remark 5.4.2 gives us a generating set ∆

and a normal form µ for W1 × · · · ×Wk;

• As G embeds as a finite index subgroup of W1 × · · · × Wk, we can use the

Schreier generating set Z and normal form ζ on G, induced by ∆ and µ.

99

Chapter 5: Equations in extensions

Lemma 5.6.3. Let G be a group that has a finite index subgroup of the form K1 ×

· · · ×Kn, and let ηKi be defined as in Remark 5.6.2. Let ζ be the normal form on

G from Remark 5.6.2. If each ηKi is regular or quasi-geodesic, then ζ is regular or

quasi-geodesic, respectively.

Proof Since each of the constructions we have used to create ζ preserve the proper-

ties of being regular and quasi-geodesic (Lemma 5.2.6, Remark 5.4.2, Lemma 5.4.4,

Lemma 4.3.11, Lemma 5.4.1), if every ηKi is regular or every ηKi is quasi-geodesic,

then ζ will be regular or quasi-geodesic, respectively. �

We now use Lemma 5.6.1 to show that the group that is virtually a direct product

has an EDT0L solution language, subject to conditions on the groups it is virtually

a direct product of.

Proposition 5.6.4. Let G be a group that contains a group of the form K1×· · ·×Kn

as a finite index normal subgroup, such that every conjugate of each of the subgroups

Ki lies in the set {K1, . . . , Kn}. Let f : Z≥0 → Z≥0.

1. If solutions to systems of equations are EDT0L in NSPACE(f) in each group

in FIN(Ki), with respect to a normal form ηKi, then solutions systems of equa-

tions in G are EDT0L NSPACE(f), with respect to the normal form ζ from

Remark 5.6.2;

2. If all the normal forms used in the groups in FIN(Ki) are regular or quasi-

geodesic, then ζ will be regular or quasi-geodesic, respectively.

Proof By Lemma 5.6.1, we have that G embeds as a finite index subgroup into

W1 × · · · ×Wk, where Wi = Ji o Pi for finite index overgroups Ji of Ki, and finite

groups Pi. By Lemma 5.5.3, it suffices to show that solutions to systems of equations

are EDT0L in NSPACE(f) in W1 × · · · ×Wk. The fact that solutions to systems

of equations are EDT0L in NSPACE(f) in each of the groups Wi follows by our

assumptions, together with Proposition 5.4.5. We can then use Proposition 5.4.6 to

show that the same holds in W1 × · · · ×Wk.

Part (2) follows from Lemma 5.6.3. �

100

Chapter 5: Equations in extensions

We now apply Proposition 5.6.4 to the specific case when the groups in the direct

product comprise one virtually abelian group, and other non-elementary hyperbolic

groups.

Lemma 5.6.5 ([22], Proposition 4.4). Let A be a virtually abelian group, and let

H1, . . . , Hn be non-elementary hyperbolic groups. Let G be a group with a finite

index subgroup H that is isomorphic to A×H1×· · ·×Hn. Then G has a finite index

normal subgroup isomorphic to B×K1×· · ·×Kn, where B is a finite index subgroup

of A, and each Ki is a finite index subgroup of Hi, such that every conjugate of each

of the subgroups Ki lies in the set {K1, . . . , Kn}.

We finally need the fact that languages of solutions to systems of equations in

hyperbolic groups are EDT0L.

Lemma 5.6.6 ([19]). Solutions to a system of equations in any hyperbolic group

are EDT0L in NSPACE(n4 log n), with respect to any finite generating set, and any

quasi-geodesic normal form. If the hyperbolic group is torsion-free, the solutions are

EDT0L in NSPACE(n2 log n).

We are now in a position to show that groups that are virtually direct products of

hyperbolic groups have EDT0L languages of solutions. Since every hyperbolic group

admits a regular geodesic normal form, if these normal forms are used to induce the

normal forms in the hyperbolic groups, then the normal form in the virtually direct

product will be quasi-geodesic and regular.

Remark 5.6.7. In the following theorem, our groups are constructed from virtually

abelian groups and other groups. As such, we are measuring our input size using

equation length, not virtually abelian equation length. However, we will continue to

use space complexity results from Chapter 4 that use virtually abelian length. This

is okay, since virtually abelian equation length is approximately the log of equation

length, and so the actual space complexity will be at least as small. It is possible that

the space complexity will be a smaller than stated, but it will still be polynomial.

Theorem 5.6.8. Let G be a group that is virtually A×H1 × · · · ×Hn, where A is

virtually abelian, and H1, . . . , Hn are non-elementary hyperbolic. Then

101

Chapter 5: Equations in extensions

1. Solutions to systems of equations in G are EDT0L in NSPACE(n4 log n), with

respect to the normal form ζ from Remark 5.6.2;

2. If, in addition, all of the groups Hi are torsion-free, then the solutions are

EDT0L in NSPACE(n2 log n);

3. The normal form ζ can be chosen to be quasi-geodesic and regular.

Proof We have from Lemma 5.6.5, that G has a finite index subgroup isomorphic

to B × K1 × · · · × Kn, where B is a finite index subgroup of A, and each Ki is

a finite index subgroup of Hi, such that every conjugate of each of the subgroups

Ki lies in the set {K1, . . . , Kn}. We have that B is virtually abelian and the

groups Ki are non-elementary hyperbolic. Thus, all groups in FIN(B) are virtually

abelian, and all groups in FIN(Ki) are hyperbolic for each i. We can equip each

of these with a regular quasi-geodesic normal form. Theorem B and Lemma 5.6.6

imply that solutions to systems of equations are EDT0L in NSPACE(n4 log n) in all

of these groups. The result then follows from Proposition 5.6.4. �

We can reformulate Theorem 5.6.8 in the following way.

Corollary 5.6.9. Let G be a group that is virtually a direct product of hyperbolic

groups (resp. torsion-free hyperbolic groups). Then the solutions to systems of equa-

tions in G are EDT0L in NSPACE(n4 log n) (resp. NSPACE(n2 log n)), with respect

to the normal form from Remark 5.6.2, which can be constructed to be quasi-geodesic

and regular.

As dihedral Artin groups are virtually a direct product of free groups, we have the

following result. Note that the generating set and normal form will not be the

standard Artin group ones; they are derived by taking the Schreier generators with

respect to some finite index overgroup. As with Theorem 5.6.8, we can choose the

regular geodesic normal forms for the free groups that dihedral Artin groups are

virtually a direct product of, to give a regular quasi-geodesic normal form for these

dihedral Artin groups.

Corollary 5.6.10. The solutions to systems of equations in dihedral Artin groups

are EDT0L in NSPACE(n2 log n), with respect to the normal form from Remark

5.6.2, which can be constructed to be quasi-geodesic and regular.

102

Chapter 5: Equations in extensions

Proof This follows from Corollary 5.6.9, together with the fact that dihedral Artin

groups are virtually direct products of free groups (Lemma 5.2.2). �

Remark 5.6.11. The generating set and normal form from Remark 5.6.2 will be the

Schreier generating set and normal form inherited from some finite index overgroup.

This will not (necessarily) be a ‘sensible’ generating set and normal form for groups

that are virtually a direct product of hyperbolic groups, or any of the standard

normal forms used in dihedral Artin groups.

It is easy to change the generating set whilst preserving the property of EDT0L

solutions. To add a (redundant) generator a, one can use the existing normal form,

which never uses a, and so the solution language will be unchanged. To remove a

redundant generator b, one can apply the free monoid homomorphism that maps

b to some word wb over the remaining generators and inverses, that represents b,

to the solution language to remove all occurrences of b. Applying the free monoid

homomorphism that maps b−1 to w−1
b after this, will give a new solution language,

with b removed from the generating set. As images of EDT0L languages under

free monoid homomorphisms are EDT0L, this new solution language will also be

EDT0L.

Changing the normal form is more difficult. Section 5 of [19] contains a success-

ful attempt at this for hyperbolic groups, which uses Ehrenfeucht and Rozenberg’s

Copying Lemma [40]; a common tool used to show preimages of EDT0L languages

under free monoid homomorphisms are EDT0L in certain cases, along with a re-

sult about languages of quasi-geodesics in hyperbolic groups. Languages of quasi-

geodesics in virtually abelian groups are not so well behaved, and any attempt to

show that alternative normal forms work in many of the groups considered here will

need an alternative approach.

103

Chapter 6

Equations in the Heisenberg group

6.1 Introduction

This chapter is based on the author’s work [66].

We consider single equations in the Heisenberg group in one variable. The fact that

satisfiability of equations with one variable in the Heisenberg group is decidable

was first shown by Repin [81]. We show that the solutions to these equations,

when written as words in Mal’cev normal form are EDT0L, with an EDT0L system

constructible in non-deterministic polynomial space.

Whilst this is only a ‘partial result’ towards understanding solution languages to

equations in nilpotent groups, there are few cases in nilpotent groups in which the

satisfiability of even single equations is decidable. Duchin, Liang and Shapiro [34]

showed that the satisfiability of a single equation in a class 2 nilpotent group with a

virtually cyclic commutator subgroup is decidable, however Roman’kov showed that

this is not the case for general class 2 nilpotent groups [84]. Duncan, Evetts, Holt and

Rees recently released some partial results about equations in solvable Baumslag-

Solitar groups [36], although this remains the only other attempt at showing solution

languages to equations are EDT0L in groups that are not non-positively curved.

Duchin Liang and Shapiro also showed that the satisfiability of systems of equations

in the Heisenberg group is undecidable. Thus the only ways of generalising this

104

Chapter 6: Equations in the Heisenberg group

result within nilpotent groups is to increase the number of variables, or generalise

to more class 2 nilpotent groups. Doing either of these would require understanding

solutions to quadratic equations in the ring of integers in arbitrarily many variables.

Theorem 6.6.5. Let L be the solution language to a single equation with one vari-

able in the Heisenberg group, with respect to the Mal’cev generating set and normal

form. Then

1. The language L is EDT0L;

2. An EDT0L system for L is constructible in NSPACE(n8(log n)2), where the

input size is the length of the equation as an element of H(Z) ∗ F (X).

Proving Theorem 6.6.5 involves reducing the problem of solving one-variable equa-

tions in the Heisenberg group to describing solutions to two-variable quadratic equa-

tions in the ring of integers. This uses a similar construction to the method of

Duchin, Liang and Shapiro, which was used to show that the satisfiability of single

equations in any class 2 nilpotent group with a virtually cyclic commutator subgroup

is decidable [34]. The proofs that many nilpotent groups have an undecidable satis-

fiability of equations involve reducing the question to systems of quadratic equations

in integers ([83], [50], [34]). Then Matijasevič’s result that the satisfiability of sys-

tems of quadratic equations in integers is undecidable [72] can be applied. Duchin,

Liang and Shapiro’s positive result involves reducing the problem to single quadratic

equations in integers, and then applying Siegel’s result that the satisfiability of such

equations is decidable [91].

Despite the extensive use EDT0L languages have had in describing solutions to

group equations, there have been no attempts to describe solutions to equations in

the ring of integers using EDT0L languages, other than linear equations, which are

just equations in an abelian group. In order to make progress studying equations in

the Heisenberg group, we will have to first learn to what extent EDT0L languages

can be used to describe solutions to quadratic equations in the ring of integers. Our

result for equations in the Heisenberg group involves reducing to the two-variable

case of quadratic equations in integers.

105

Chapter 6: Equations in the Heisenberg group

Theorem 6.5.15. Let

αX2 + βXY + γY 2 + δX + εY + ζ = 0 (6.1)

be a two-variable quadratic equation in the ring of integers, with a set S of solutions.

Then

1. The language L = {ax#by | (x, y) ∈ S} is EDT0L over the alphabet {a, b, #};

2. Taking the input size to be max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|), an EDT0L system

for L is constructible in NSPACE(n4 log n).

We prove this theorem using Lagrange’s method. This involves reducing an arbitrary

two-variable quadratic equation to a generalised Pell’s equation X2 − DY 2 = N .

This again reduces to Pell’s equation X2 −DY 2 = 1, the set of solutions of which

is well-understood. The reduction involves writing solutions to the two variable

quadratic equation (6.1) in the form λx+µy+ξ
η

, where (x, y) is a solution to some

computable Pell’s equation, and λ, µ, ξ, η ∈ Z with η 6= 0 are all computable.

Showing that the set of solutions to Pell’s equation can be expressed as an EDT0L

language is not too difficult. However, studying λx+µy+ξ
η

requires more work, par-

ticularly when the signs of λ, µ and ξ are not all the same, or when |η| ≥ 2. To

deal with the division, we use the concept of #-separated EDT0L systems, first

introduced in [65], and work in the world of EDT0L languages.

Understanding λx + µy + ξ, when λ, µ and ξ are not all the same sign is more

difficult to resolve by manipulating EDT0L systems. This is because we represent

the integer n by an; that is a word of length n comprising n occurrences of the letter

a (when n ≥ 0) or n occurrences of the letter a−1 (when n ≤ 0). Adding 4 to −2

corresponds to concatenating a4 with a−2, resulting in a4a−2, which is not equal as

a word to a2. We cannot simply ‘cancel’ as and a−1s either; in general the language

obtained by freely reducing all words in an EDT0L language is not EDT0L (it need

not even be recursive). Therefore, we work with facts about the solutions themselves

106

Chapter 6: Equations in the Heisenberg group

to show that for fixed integers λ, µ and ξ, the set

{λx+ µy + ξ | (x, y) is a solution to X2 −DY 2 = 1}

is sufficiently well-behaved that we can describe it using an EDT0L language. We

can then apply our method for the ‘division’ to obtain the desired language.

We cover the preliminaries of the considered topics in Section 6.2. In Section 6.3,

we prove our result about ‘division’ of EDT0L languages by a constant that is a key

part of the proof that the solutions to two-variable quadratic equations in the ring

of integers are EDT0L, which appears in Section 6.5. In Section 6.4, we study the

solutions to Pell’s equation, and their images under linear functions. The proof of the

fact that solutions to two-variable quadratic equations are EDT0L involves reducing

to the case of Pell’s equation. This reduction is contained in Section 6.5. Section

6.6 includes the reduction from equations in the Heisenberg group to quadratic

equations in the ring of the integers, and the proof that single equations in one

variable in the Heisenberg group are expressible as EDT0L languages.

6.2 Preliminaries

6.2.1 Nilpotent groups

We start with the definitions of a nilpotent group and the Heisenberg group. For a

comprehensive introduction to nilpotent groups we refer the reader to [23].

Definition 6.2.1. Let G be a group. Define γi(G) for all i ∈ Z>0 inductively as

follows:

γ1(G) = G

γi(G) = [G, γi−1(G)] for i > 1.

The subnormal series (γi(G)) is called the lower central series of G. We call G

107

Chapter 6: Equations in the Heisenberg group

nilpotent of class c if γc(G) is trivial.

Definition 6.2.2. The Heisenberg group H(Z) is the class 2 nilpotent group defined

by the presentation

H(Z) = 〈a, b, c | c = [a, b], [a, c] = [b, c] = 1〉.

Note that whilst the generator c is redundant, it is often easier to work with the

generating set {a, b, c} than {a, b}.

The Mal’cev generating set for the Heisenberg group is the set {a, b, c}.

6.2.2 Mal’cev normal form

We now define the normal form that we will be using to represent our solutions. This

is used in [34], and we include the proof of uniqueness and existence for completeness.

The following facts about commutators in class 2 nilpotent groups will be used to

induce the methods for ‘pushing’ bs past as in the Heisenberg group.

Lemma 6.2.3. Let G be a class 2 nilpotent group, and g, h ∈ G. Then

1. [g−1, h−1] = [g, h],

2. [g−1, h] = [g, h]−1.

Proof For (1), since commutators are central,

[g−1, h−1] = ghg−1h−1 = ghg−1h−1ghh−1g−1 = gh[g, h]h−1g−1 = [g, h]ghh−1g−1 = [g, h].

Similarly, for (2), we have

[g−1, h] = gh−1g−1h = gh−1g−1hgg−1 = g[g, h]−1g−1 = gg−1[g, h]−1 = [g, h]−1.

�

Using Lemma 6.2.3, we now have a number of useful identities for ‘pushing’ as past

108

Chapter 6: Equations in the Heisenberg group

bs in expressions over the Mal’cev generating set.

Lemma 6.2.4. The following identities hold for the Mal’cev generators of the Heisen-

berg group:

ba = abc

ba−1 = a−1bc−1

b−1a = ab−1c−1

b−1a−1 = a−1b−1c.

Proof We have

ba = abb−1a−1ba = abc

ba−1 = a−1bb−1aba−1 = a−1b[b, a−1] = a−1bc−1

b−1a = ab−1ba−1b−1a = ab−1[b−1, a] = ab−1c−1

b−1a−1 = a−1b−1bab−1a−1 = a−1b−1[b−1, a−1] = a−1b−1c.

�

The following lemma allows us to define the Mal’cev normal form for the Heisenberg

group.

Lemma 6.2.5. For each g ∈ H(Z) there exists a unique word of the form aibjck

that represents g, where i, j, k ∈ Z.

Proof Existence: Let w ∈ {a, b, c, a−1, b−1, c−1}∗. To transform w into an

equivalent word in the form aibjck, first note that c is central, so w is equal to uck,

where u ∈ {a, b, a−1, b−1}∗, and k ∈ Z, which is obtained by pushing all cs and

c−1s in w to the right, then freely reducing. We can then look for any bs or b−1s

before as or a−1s, and use the rules of Lemma 6.2.4 to ‘swap’ them, by adding a

commutator.

109

Chapter 6: Equations in the Heisenberg group

After doing these swaps, we can push the ‘new’ cs and c−1s to the back, to assume

our word remains within {a, b, a−1, b−1}∗({c}∗∪{c−1}∗). By repeating this process,

we will eventually have no more as or a−1s occurring after any b or b−1, and so will

be in the form aibjck, where i, j, k ∈ Z.

Uniqueness: Suppose i1, i2, j1, j2, k1, k2 ∈ Z are such that ai1bj1c
k1 =H(Z) a

i2bj2ck2 .

Then

1 = ai1bj1c
k1(ai2bj2ck2)−1

= ai1bj1ck1c−k2b−j2a−i2

= ai1bj1−j2a−i2ck1−k2

= ai1a−i2bj1−j2c−i2(j1−j2)ck1−k2

= ai1−i2bj1−j2c−i2(j1−j2)+k1−k2 .

As 1 lies in the commutator subgroup, we have that the above word lies in 〈c〉.

But since c commutes with a and b, aibj ∈ 〈c〉 if and only if i = j = 0. Thus

i1 − i2 = j1 − j2 = 0. It follows that the above word equals ck1−k2 . Since this is a

freely reduced word in 〈c〉 as a power of c, this represents the identity if and only if

k1 − k2 = 0. Thus k1 − k2 = 0, and the two words represent the same element of

H(Z). �

Definition 6.2.6. The Mal’cev normal form for the Heisenberg group is the normal

form that maps an element g ∈ H(Z) to the unique word of the form aibjck, where

i, j, k ∈ Z, that represents g.

6.2.3 Equations in the ring of integers

We briefly define an equation in integers.

Definition 6.2.7. An equation in the ring of integers is an identity (X1, . . . , Xn)f =

0, where (X1, . . . , Xn)f ∈ Z[X1, . . . , Xn] is a polynomial. The indeterminates

110

Chapter 6: Equations in the Heisenberg group

X1, . . . , Xn are called variables. An equation is called quadratic if the degree of

(X1, . . . , Xn)f is at most 2.

A solution to an equation (X1, . . . , Xn)f = 0 in the ring of integers is a ring

homomorphism φ : Z[X1, . . . , Xn] → Z that fixes Z pointwise, and such that

(X1, . . . , Xn)fφ = 0.

A system of equations in integers is a finite set of equations. A solution to the system

is any ring homomorphism that is a solution to every equation in the system.

When we create algorithms that take equations in integers as input, we will explicitly

state the size of the input.

Remark 6.2.8. As with group equations, we will usually use a tuple (x1, . . . , xn)

rather than a ring homomorphism φ : Z[X1, . . . , Xn] → Z. The homomorphism

φ can be obtained from the tuple by defining X1φ = xi for all i, and nφ = n for

all n ∈ Z. Since φ is a ring homomorphism, the action of φ on the remainder of

Z[X1, . . . , Xn] is now determined.

6.2.4 Solution languages

We now define an analogous notion for systems of equations in the ring of integers.

We pick a letter as a generator, and write the non-negative integer n as this letter

to the power of n. For negative integers, we introduce an ‘inverse’ of this letter, and

express each n < 0 as the inverse letter to the power of |n|.

Definition 6.2.9. Define µ : Z→ {a}∗ ∪ {a−1}∗ by nµ = an.

Let E be a system of equations in the ring of integers, with variables X1, . . . , Xn.

The solution language to E is the language

{(X1)φµ# · · · (Xn)φµ | φ is a solution to E}

over {a, a−1, #}.

111

Chapter 6: Equations in the Heisenberg group

6.3 ‘Dividing EDT0L’ languages by a constant

The purpose of this section is to show that given an EDT0L language where all

words are of the form ai#bj, ‘dividing’ the number of as and the number of bs in a

given word by constant values, and removing all words that are not divisible yields

an EDT0L language. We proceed in a similar fashion to the arguments used in [65],

Section 3, using #-separated EDT0L systems, however the argument for ‘dividing’

is new.

The concept of #-separated EDT0L systems was used in [65] to show that solution

languages to systems of equations in direct products of groups where systems of

equations have EDT0L solution languages are also EDT0L. We use a slightly dif-

ferent definition here: we only need a single # rather than arbitrarily many, so our

definition is less general, and we also insist that the start word is of a specified form.

The latter assumption does not affect the expressive power of these systems; pre-

concatenating the rational control with an appropriate endomorphism can convert

a #-separated system with an arbitrary start word into one with a start word of the

form we use.

Definition 6.3.1. Let Σ be an alphabet, and # ∈ Σ. A #-separated EDT0L system

is an EDT0L system H, with an extended alphabet C, a terminal alphabet Σ and a

start word of the form ⊥1 # ⊥2, where ⊥1, ⊥2∈ C\{#}, and cφ = # if and only if

c = #, for every c ∈ C, and φ in any fixed choice of alphabet of the rational control.

For space complexity purposes, we will need bounds on the size of extended alpha-

bets, and the size of images of letters under endomorphisms in the rational control

in many of the EDT0L systems we use. We define the term g-bounded to capture

this.

Definition 6.3.2. Let H = (Σ, C, ⊥1 # ⊥2, R) be a #-separated EDT0L system,

and let g : Z≥0 → Z≥0 be a function in terms of a given input size I. Let B be an

alphabet of R. We say that H is g-bounded if

1. |C| ≤ (I)g;

2. max{|cφ| | c ∈ C, φ ∈ B} ≤ (I)g.

112

Chapter 6: Equations in the Heisenberg group

We will need the fact that the class of languages accepted by #-separated EDT0L

systems is closed under finite unions, with space complexity properties being pre-

served when taking these unions.

Lemma 6.3.3. Let L and M be languages over an alphabet Σ, accepted by #-

separated EDT0L systems H and G, that are both g-bounded and constructible in

NSPACE(f), for some f, g : Z≥0 → Z≥0. Then

1. There is a #-separated EDT0L system F for L ∪M ;

2. The system F is constructible in NSPACE(f);

3. The system F is (2g + 2)-bounded.

Proof Let H = (Σ, C, ⊥1 #$1, R) and G = (Σ, D, ⊥2 #$2, S). Let B1 and B2

be the alphabets of R and S, respectively. We can assume without loss of generality

that endomorphisms in B1 ∪B2 fix elements of Σ, and also that C\Σ and D\Σ are

disjoint.

Let ⊥ and $ be symbols not already used, and let E = C ∪ D ∪ {⊥, $}. For

each φ ∈ B1, define φ̄ to be the extension of φ to E by dφ̄ = d for all d ∈ E\C.

Similarly extend each φ ∈ B2 to φ̄ ∈ End(E∗) by cφ̄ = c for all c ∈ E\D. Define

θ1, θ2 ∈ End(E∗) by

cθ1 =

⊥1 c =⊥

$1 c = $

c otherwise,

cθ2 =

⊥2 c =⊥

$2 c = $

c otherwise.

By construction, L∪M is accepted by the #-separated EDT0L system F = (Σ, E, ⊥

#$, θ1R∪ θ2S).

Note that θ1 and θ2 can both be constructed in constant space, and thus the rational

control of F is constructible in NSPACE(f). The start word is constructible in

constant space. As a union of C and D with a constant number of additional

symbols, E can be constructed using the same information required to construct C

and D, and is thus constructible in NSPACE(f).

We have that |E| = |C| + |D| + 2, and so is bounded by 2g + 2. In addition,

113

Chapter 6: Equations in the Heisenberg group

B = B1 ∪B2 ∪ {θ1, θ2}, and so max{|cφ| | c ∈ E, φ ∈ B} = max(g, 2) ≤ 2g+ 2. �

We can now prove the central result of this section, about ‘division’ of certain EDT0L

languages by a constant. To show the space complexity properties, we need the

EDT0L system we start with to be exponentially bounded by the space complexity

in which is can be constructed. We will use the following notation:

Notation 6.3.4. Let Σ be an alphabet, a ∈ Σ, and w ∈ Σ∗. Define #a(w) to be

the number of occurrences of the letter a within w.

Lemma 6.3.5. Let X ⊆ Z2
≥0 be such that for each x, y ∈ Z≥0 there is at most one

x′ ∈ Z≥0 such that (x, x′) ∈ X, and at most one y′ ∈ Z≥0 with (y′, y) ∈ X. Let

γ, ζ ∈ Z be non-zero. Let

L = {ax#by | (x, y) ∈ X}.

1. If L is EDT0L, then so is the language

Lγ,ζ = {a
x
γ #b

y
ζ | (x, y) ∈ X, γ|x, ζ|y};

2. If L is accepted by a #-separated EDT0L system H = (Σ, C, ⊥1 # ⊥2, R)

that is exp(f)-bounded and constructible in NSPACE(f), where f : Z≥0 → Z≥0

is at least linear, then Lγ,η is accepted by an EDT0L system that is constructible

in NSPACE(fgh), where g is linear in |γ|, and h is linear in |ζ|.

Proof We will use H to define an EDT0L system for

M = {a
x
|γ|#by | (x, y) ∈ X, γ|x}.

Firstly note that if |γ| = 1, then M = L, and thus M is accepted by H, which

satisfies the conditions in (2). So assume |γ| ≥ 2. Let ¢ and $ be symbols not

already used. Let ĉν be a distinct copy of c for each c ∈ C and ν ∈ {¢, $}∗. Let

C ind = {ĉν | ν ∈ {¢, $}∗, |ν| ≤ |γ|} t C t {F}, where F is a new symbol. We will

use F as a ‘fail symbol’.

114

Chapter 6: Equations in the Heisenberg group

Let B ⊆ End(C∗) be the alphabet of R. For each φ ∈ B, the finite set Φφ ⊆

End((C ind)∗) of all ψ ∈ End((C ind)∗) is defined as follows. If ν ∈ {¢, $}∗ satisfies

|ν| ≤ |γ|, and c ∈ C is such that cφ = d1 · · · dn, with n ≥ 1, d1, . . . , dn ∈ C (in

particular, cφ 6= ε), then

ĉνψ = d̂α1
1 · · · d̂αnn ,

for some α1, . . . , αn ∈ {¢, $}∗ such that |αi| ≤ |γ| for all i, and one of the following

holds:

1. #$(α1 · · ·αn) = #$(ν), and #¢(α1 · · ·αn) = #¢(ν);

2. #$(α1 · · ·αn) = #$(ν) + 1, and #¢(α1 · · ·αn) = #¢(ν) + |γ| − 1.

If cφ = ε, then

ĉνψ =

 F ν 6= ε

ε ν = ε.

In addition, ψ fixes F , and acts the same way as φ on letters in C. We define Φφ

to be the set of all endomorphisms ψ satisfying these conditions, and let R̄ be the

rational set of endomorphisms defined by replacing each occurrence of φ within R

with Φφ. Now define θ ∈ End((C ind)∗) by

ĉνθ =

c c ∈ Σ, ν = $

ε c ∈ Σ, ν = ¢

F otherwise,

Fθ = F, cθ = c for all c ∈ C.

Let G = (Σ, C ind, ⊥̂1# ⊥2, R̄θ). By construction, any word in ⊥̂1R̄ either contains

an F , or is a word in ⊥1 R with hats on letters and indices that concatenate to form

a word ν ∈ {¢, $}∗ of length n|γ| for some n ∈ Z≥0, with #¢(ν) = n(|γ| − 1), and

#$(ν) = n. Thus the set of words in ⊥̂1R̄θ ∩ Σ equals {a
x
|γ| | (x, y) ∈ S, γ|x}. It

follows that G accepts M .

We now consider the space complexity in which G can be built. Firstly, note that to

output C ind we simply need to output (2|γ|+1− 1) (the number of words of length at

most |γ| over a two letter alphabet) additional copies of C, plus the letter F . Doing

this simply requires us to track the copy we’re on, and since log(2|γ|+1 − 1) is linear

in |γ|, this can be done in NSPACE(f). The start word can be output in constant

115

Chapter 6: Equations in the Heisenberg group

space.

We now consider the rational control. To construct R̄, we need to follow the process

to construct R, except we need to construct Φφ whenever the finite-state automaton

for R constructs φ. Let ψ ∈ Φφ, and note that if c ∈ C and ν ∈ {¢, $}∗ is such that

|ν| ≤ |γ|, then there are at most

(max{|cϕ| | c ∈ C, ϕ ∈ B})|ν| ≤ (max{|cϕ| | c ∈ C, ϕ ∈ B})|γ|

possible values that ĉνψ can take. As a result,

|Φφ| ≤ (max{|cϕ| | c ∈ C, ϕ ∈ B})|γ| · |C| · (2|γ|+1 − 1).

Thus

log |Φφ| ≤ |γ| log(max{|cϕ| | c ∈ C, ϕ ∈ B}) + log |C|+ (|γ|+ 1) log 2.

To construct Φφ, we simply need to store the information required to construct φ,

together with a counter to tell us how many ψ in Φφ we have already constructed.

Since log |Φφ| is bounded by fg for some linear function g in |γ|, we can construct

Φφ, and hence R̄ in NSPACE(fg). As θ can be constructed in constant space, it

follows that the rational control, and hence G, can be constructed in NSPACE(fg).

To see that the language accepted by G is in fact M , first note that for any φ̄ ∈ R̄,

⊥̂1φ̄ will be obtained from a word ⊥1 φ, for some φ ∈ R by attaching k(|γ| − 1) ¢

indices and k $ indices, for some k ∈ Z≥0. This will only be accepted if (⊥1 # ⊥2

)φ ∈ Σ∗, and every letter in ⊥1 φ has precisely one index on it. In such a case,

| ⊥1 φ| = k|γ| (in fact | ⊥1 φ| = a±k|γ|), and precisely k of these letters will be

indexed by $, the rest being indexed by ¢. Hitting such a word with θ will delete all

letters indexed with a single ¢, and map the $-indexed as to a and $-indexed a−1s

to a−1, leaving the word a±x#by to be accepted. Thus M is accepted by G.

We now show that

N = {a
x
γ #by | (x, y) ∈ X, γ|x}

116

Chapter 6: Equations in the Heisenberg group

is accepted by an EDT0L system, constructible in NSPACE(fg). Note that if γ ≥ 0,

then M = N , and there is nothing to prove. Otherwise, γ < 0. Define π ∈

End((C ind)∗) by aπ = a−1, a−1π = a and all other letters are fixed by π. Then

(Σ, C ind, ⊥1 # ⊥2, R̄θπ) accepts N , as we have just flipped the sign of the as

in M . Moreover, as G is constructible in NSPACE(fg), so is our system for N . In

addition, the stated bounds on the size of the extended alphabet and the images of

endomorphisms of G hold for our system for N as well.

To obtain an EDT0L system for {a
x
γ #b

y
ζ | (x, y) ∈ X, γ|x, ζ|y} from N , we simply

apply the same method we used to obtain N from L, except modifying ⊥2 and b,

rather than ⊥1 and a. �

6.4 Pell’s equation

The purpose of this section is to study solutions to Pell’s equation, which eventually

allows us to show that the solution language to a quadratic equation in the ring of

integers is EDT0L.

We start with a lemma that shows languages that arise as part of recursively defined

integer sequences with non-negative integer coefficients are EDT0L. We will later

show that solutions to Pell’s equation are of this form.

Lemma 6.4.1. Let (pn)n≥0, (qn)n≥0 and (rn)n≥0 be integer sequences, defined recur-

sively by a relation

pn = α1pn−1+α2qn−1+α3rn−1, qn = β1pn−1+β2qn−1+β3rn−1, rn = γ1pn−1+γ2qn−1+γ3rn−1

where α1, α2, α3, β1, β2, β3, γ1, γ2, γ3 ∈ Z≥0. Suppose also that p0, q0, r0 ∈ Z≥0

or p0, q0, r0 ∈ Z≤0. Then

1. The language L = {apn | n ∈ Z≥0} is EDT0L;

2. Taking the input size to be I = max(α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, p0, q0, r0),

an EDT0L system H for L is constructible in non-deterministic logarithmic

space;

117

Chapter 6: Equations in the Heisenberg group

3. The system H is f -bounded for some linear function f ;

4. The rational control of H is of the form θϕ∗ψ, and ⊥ θϕnψ = apn, where ⊥ is

the start word of H.

Proof We will define an EDT0L system to accept L. Let Σ = {a, a−1}. Our

extended alphabet will be C = Σ ∪ {ap, a−1
p , aq, a

−1
q , ar, a

−1
r , ⊥}, and our start

word will be ⊥. Define θ ∈ End(C∗) by

cθ =

 ap0p a
q0
q a

r0
r c =⊥

c otherwise.

Define ϕ ∈ End(C∗) by

a±1
p ϕ = a±α1

p a±β1q a±γ1r

a±1
q ϕ = a±α2

p a±β2q a±γ2r

a±1
r ϕ = a±α3

p a±β3q a±γ3r

and fix all other letters. Finally, define ψ ∈ End(C∗) by

a±1
p ψ = a±1

a±1
q ψ = a±1

r ψ = ε,

and all other letters are fixed. Our rational control will be θϕ∗ψ.

First note that u =⊥ θϕn contains either ap or a−1
p , but not both, and the same holds

for aq and a−1
q , and ar and a−1

r . So we can abuse notation and take the definition

of #ap when applied to such a word to be #ap(u) if u contains an ap, −#a−1
p

(u) if u

contains an a−1
p , and 0 if it contains neither. We similarly abuse notation with #aq

and #ar .

We will show by induction that u =⊥ θϕn satisfies #aq(u) = pn, #aq(u) = qn, and

#ar(u) = rn. This holds by definition for n = 0. Inductively suppose it is true for

some k − 1. Then ⊥ θϕk = u, for some u ∈ {ap, a−1
p , aq, a

−1
q , ar, a

−1
r }∗, with

118

Chapter 6: Equations in the Heisenberg group

#aq(u) = pk−1, #aq(u) = qk−1, and #ar(u) = rk−1. Using the definition of ϕ, and

our inductive hypothesis we have

#ap(uϕ) = α1#ap(u) + α2#aq(u) + α3#ar(u) = α1pk−1 + α2qk−1 + α3rk−1 = pk

#aq(uϕ) = β1#ap(u) + β2#aq(u) + β3#ar(u) = β1pk−1 + β2qk−1 + β3rk−1 = qk

#ar(uϕ) = γ1#ap(u) + γ2#aq(u) + γ3#ar(u) = γ1pk−1 + γ2qk−1 + γ3rk−1 = rk.

It now follows that ⊥ θϕnψ = apn , and thus (1) and (4) are true.

We now show that the EDT0L system (Σ, C, ⊥, θϕ∗ψ) is constructible in non-

deterministic linear space. Writing down Σ, C, ψ and the start word can be done

in constant space. Writing down θ can be done by remembering p0, q0 and r0, and

thus can be done in non-deterministic logarithmic space, since storing an integer r

requires log(r) plus a constant bits. It remains to show that ϕ can be defined in

non-deterministic logarithmic space. To write down ϕ, we simply need to know the

coefficients αi, βi and γi for i ∈ {1, 2, 3}. Since these can all be stored using logαi,

log βi and log γi bits, respectively plus constants, (2) follows.

Finally note that |C| = 8, which is constant. In addition, |cϕ|, for c ∈ C, is bounded

by a linear function of the values αi, βi and γi, |cθ| ≤ p0 + q0 + r0, and |cψ| ≤ 1. We

have now shown (3). �

To show that the solution language to a general quadratic equation in two variables is

EDT0L, we follow Lagrange’s method to reduce it to the generalised Pell’s equation,

and then to Pell’s equation. This reduction is detailed in [89]. We start with the

definition of Pell’s equation.

Definition 6.4.2. Pell’s equation is the equation X2 −DY 2 = 1 in the ring of the

integers, where X and Y are variables, and D ∈ Z>0 is not a perfect square. The

fundamental solution to Pell’s equation X2−DY 2 = 1 is the minimal (with respect

to the `1 metric on Z2) non-negative integer solution that is not (1, 0).

The solutions to Pell’s equation have long been understood. The following lemma

119

Chapter 6: Equations in the Heisenberg group

details one of several ways of constructing them.

Lemma 6.4.3 ([4], Theorem 3.2.1). There are infinitely many solutions to Pell’s

equation X2−DY 2 = 1, and these are {(xn, yn) | n ∈ Z≥0}, where (x0, y0) = (1, 0),

and (xn, yn) is recursively defined by

xn = x1xn−1 +Dy1yn−1, yn = y1xn−1 + x1yn−1,

where (x1, y1) is the fundamental solution.

We give an explicit example of Pell’s equation and its solutions.

Example 6.4.4. Consider Pell’s equation X2 − 2Y 2 = 1. It is not hard to check

using brute force that the fundamental solution is (3, 2) (although there are more

efficient methods of doing this: see for example [4]). Thus by Lemma 6.4.3, we

can construct the set of all solutions using the sequence (xn, yn) ⊆ Z2, defined

recursively by (x0, y0) = (1, 0), and

xn = 3xn−1 + 4yn−1, yn = 2xn−1 + 3yn−1.

At this point, we could just apply Lemma 6.4.1 and Theorem 3.3.2 to show that

the language {ax#ay | (x, y) ∈ Z2
≥0 is a solution to X2 − 2Y 2 = 1} is EDT0L,

however we will explicitly construct an EDT0L system. Our extended alphabet will

be C = {ax, āx, ay, āy, a, #} and our start word will be ax#āx. Let ϕ ∈ End(C∗)

be defined by

axϕ = a3
xā

2
y āxϕ = ā3

xa
2
y

ayϕ = ā4
xa

3
y āyϕ = a4

xā
3
y,

aϕ = a #ϕ = #.

120

Chapter 6: Equations in the Heisenberg group

Figure 6.1: Rational control for L = {ax#ay | (x, y) ∈ Z2
≥0 is a solution to X2 −

2Y 2 = 1}, with start state q0 and accept state q1.

q0 q1ϕ
θ

Define θ ∈ End(C∗) by

axθ = ayθ = aθ = a

āxθ = āyθ = ε

#θ = #.

Our rational control will be ϕ∗θ (alternatively, see Figure 6.1). Recall that for any

word w and letter b, we use #b(w) to denote the number of occurrences of b within

w. By construction, #ax(ax#āxϕ
n) = #āx(ax#āxϕ

n) = xn and #ay(ax#āxϕ
n) =

#āy(ax#āxϕ
n) = yn, and thus ax#āxϕ

nθ = axn#ayn .

In addition to the recursive structure of all solutions, we need a bound on the size of

the fundamental solution. This allows us to give a bound on the space complexity

in which the EDT0L system can be constructed.

Lemma 6.4.5 ([63], Section 3). Let (x1, y1) be the fundamental solution to Pell’s

equation X2 −DY 2 = 1. Then

log(x1 + y1

√
D) <

√
D(log(4D) + 2).

Understanding solutions to arbitrary two-variable quadratic equations using La-

grange’s method requires us to have an understanding of the images of the solu-

tions to Pell’s equation under linear functions: that is αx + βy + γ for constant

α, β, γ ∈ Z, where (x, y) is a solution. If α, β and γ are either all non-negative

or all non-positive, this corresponds to concatenating EDT0L languages in parallel,

121

Chapter 6: Equations in the Heisenberg group

which is not too difficult using standard EDT0L constructions.

On the other hand, if the signs of these three integers are not all the same, more

work needs to be done. This occurs because we represent the integer n ∈ Z by

an, where a is a letter. Thus if we want to ‘add’ −3 and 5, this corresponds in

language terms to trying to concatenate a−3 and a5, which results in a−3a5, which

is not equal (as a word) to a2. One cannot, in general, freely reduce all words in an

EDT0L language to form an EDT0L language. There are in fact cases where such

a reduction will result in a language that is not recursive; that is a language which

is not accepted by a Turing machine, or whose complement is not accepted by a

Turing machine.

To tackle the harder cases presented to us by ‘subtraction’, we instead study the

integer sequences themselves, and show they satisfy recurrence relations that can be

used to define EDT0L systems.

Lemma 6.4.6. Let (xn), (yn) ⊆ Z≥0 be sequences of solutions to Pell’s equation

X2 − DY 2 = 1. Let α, β ∈ Z≥0. Let (zn) ⊆ Z be the sequence defined by zn =

αxn − βyn. Then, for all n ∈ Z≥2

1. xn = 2x1xn−1 − xn−2;

2. yn = 2x1yn−1 − yn−2;

3. zn = 2x1zn−1 − zn−2.

Proof We will proceed by induction on n to show (1) and (2). First note that

2x1y1 − y0 = x1y1 + y1x1 = y2.

Additionally,

2x1x1 − x0 = x2
1 + (x2

1 − 1) = x2
1 +Dy2

1 = x2.

122

Chapter 6: Equations in the Heisenberg group

Thus (1) and (2) hold when n = 2. Suppose the result holds when n = k. Then

xk+1 = x1xk +Dy1yk

= x1(2x1xk−1 − xk−2) +Dy1(2x1yk−1 − yk−2)

= 2x1(x1xk−1 +Dy1yk−1)− (x1xk−2 +Dy1yk−2)

= 2x1xk − xk−1.

yk+1 = y1xk + x1yk

= y1(2x1xk−1 − xk−2) + x1(2x1yk−1 − yk−2)

= 2x1(y1xk−1 + x1yk−1)− (y1xk−2 + x1yk−2)

= 2x1yk − yk−1.

It remains to show (3). We have, using (1) and (2),

zn = αxn − βyn

= α(2x1xn−1 − xn−2)− β(2x1yn−1 − yn−2)

= 2x1(αxn−1 − βyn−1)− (αxn−2 − βyn−2)

= 2x1zn−1 − zn−2.

�

Using Lemma 6.4.6, we can now prove some results about the sequence (zn) that

show that it is indeed a type of sequence as mentioned by Lemma 6.4.1.

Lemma 6.4.7. Let (xn), (yn) ⊆ Z≥0 be sequences of solutions to Pell’s equation

X2 − DY 2 = 1. Let α, β ∈ Z≥0. Let (zn) ⊆ Z be the sequence defined by zn =

αxn − βyn. Then

1. If N =
⌈
log2

α
β

⌉
, then (zn)n≥N ⊆ Z≥0 or (zn)n≥N ⊆ Z<0;

123

Chapter 6: Equations in the Heisenberg group

2. The sequence (wn)n≥1 ⊆ Z defined by wn = zn− zn−1 satisfies for all n ∈ Z≥2,

zn = (2x1 − 1)zn−1 + wn−1, wn = (2x1 − 2)zn−1 + wn−1;

3. If (zn)n≥N is a sequence of non-negative integers then (wn)n≥N is, and if

(zn)n≥N is a sequence of non-positive integers then (wn)n≥N is;

4. The sequence (wn)n≥N is monotone;

5. If γ ∈ Z and M =
⌈
log2

(γ+3)α
β

⌉
, then (zn + γ)n≥M , (wn + γ)n≥M ⊆ Z≥0 or

(zn + γ)n≥M , (wn + γ)n≥M ⊆ Z≤0.

Proof We start by showing (1). Let γ = β√
D

. Then, if n ∈ Z≥0,

zn = αxn − βyn = αxn − γ
√
Dyn.

We have that zn ≥ 0 if and only if zn(γxn + α
√
Dyn) ≥ 0. Note that

zn(γxn + α
√
Dyn) = (αxn − γ

√
Dyn)(γxn + α

√
Dyn)

= αγx2
n + α2

√
Dxnyn − γ2

√
Dxnyn − αγDy2

n

= αγ(x2
n −Dy2

n) +
√
Dxnyn(α2 − γ2)

= αγ +
√
Dxnyn(α2 − γ2).

If α ≥ γ, the above expression must be at least 0, so zn ≥ 0 for all n ∈ Z≥0, and

there is nothing to prove. Otherwise, suppose γ > α, and write γ = α + δ for some

δ > 0. Then

zn(γxn + α
√
Dyn) = αγ +

√
Dxnyn(α2 − γ2)

= α(α + δ) +
√
Dxnyn(α2 − (α + δ)2)

= α2 + αδ −
√
Dxnyn(δ2 + 2αδ).

124

Chapter 6: Equations in the Heisenberg group

It follows that zn < 0 if and only if α2 + αδ −
√
Dxnyn(δ2 + 2αδ) < 0. That is,

xnyn >
α2 + αδ√
D(δ2 + 2αδ)

.

Noting that xn and yn are both strictly increasing, and if n ≥ 1, xnyn > 1, it suffices

to find N ∈ Z>0 such that if n = N the above inequality holds. By Lemma 6.4.3, we

have that xn ≥ x1xn−1 and yn ≥ x1yn−1, and so xnyn ≥ x2n−1
1 y1. Noting that x1 ≥ 2

and y1 ≥ 1, it follows that xnyn ≥ 2n. Note that α
β

= αγ√
D

= α2+αδ√
D
≥ α2+αδ√

D(δ2+2αδ)
, and

so choosing N =
⌈
log2

α
β

⌉
will satisfy the stated conditions.

For (2), let n ∈ Z≥2. Then, using Lemma 6.4.6,

zn = 2x1zn−1 − zn−2 = (2x1 − 1)zn−1 + wn−1.

wn = zn − zn−1 = 2x1zn−1 − zn−2 − zn−1 = (2x1 − 2)zn−1 + wn−1.

We now show (3). As with our proof of (1), let γ = β√
D

. Then, for all n ∈ Z>0,

wn = zn−zn−1 = αxn−γ
√
Dyn−αxn−1+γ

√
Dyn−1 = α(xn−xn−1)−γ

√
D(yn−yn−1).

Since xn and yn are both strictly increasing, wn ≥ 0 if and only if wn(γ(xn−xn−1)+

α
√
D(yn − yn−1)) ≥ 0. Let un = wn(γ(xn − xn−1) + α

√
D(yn − yn−1)). Write

125

Chapter 6: Equations in the Heisenberg group

vn = (α2 − γ2)
√
D(xn − xn−1)(yn − yn−1). We have

un = (α(xn − xn−1)− γ
√
D(yn − yn−1))(γ(xn − xn−1) + α

√
D(yn − yn−1))

= αγ((xn − xn−1)2 −D(yn − yn−1)2) + (α2 − γ2)
√
D(xn − xn−1)(yn − yn−1)

= αγ(x2
n − 2xnxn−1 + x2

n−1 −Dy2
n + 2Dynyn−1 −Dy2

n−1) + vn

= αγ((x2
n −Dy2

n) + (x2
n−1 −Dy2

n−1) + 2Dynyn−1 − 2xnxn−1) + vn

= 2αγ(1 +Dynyn−1 − xnxn−1) + vn

= 2αγ(1 +D(y1xn−1 + x1yn−1)yn−1 − (x1xn−1 +Dy1yn−1)xn−1) + vn

= 2αγ(1 +Dy1xn−1yn−1 +Dx1y
2
n−1 − x1x

2
n−1 −Dy1yn−1xn−1) + vn

= 2αγ(1 +Dx1y
2
n−1 − x1x

2
n−1) + vn

= 2αγ(1− x1(x2
n−1 −Dy2

n−1)) + vn

= 2αγ(1− 1) + vn

= (α2 − γ2)
√
D(xn − xn−1)(yn − yn−1).

Note that (α2 − γ2)
√
D(xn − xn−1)(yn − yn−1) ≥ 0 if and only if α ≥ γ; that is

α
β

√
D ≥ 1. As we saw in the proof of part (1), α

β

√
D ≥ 1 implies (zn)n≥N is a

sequence of non-negative integers, and α
β

√
D < 1 implies (zn)n≥N is a sequence of

non-positive integers, as required.

For (4), we show (wn)n≥N is monotone. First note that (wn)n≥N and (zn)n≥N are

both sequences of non-negative integers or sequences of non-positive integers. In

addition, wn = wn−1 + 2x1zn−1 for all n ∈ Z>0. So if n ∈ Z≥N , then |wn| =

|wn−1|+ |2x1zn−1| ≥ |wn−1|. As (wn)n≥N is a sequence of non-negative integers or a

sequence of non-positive integers, it must be monotone.

We finally consider (5). It suffices to show that |zM | > |γ| and |wM | ≥ |γ|, then

together with the fact that M ≥ N , and using the fact that (zn)n≥N is monotone

126

Chapter 6: Equations in the Heisenberg group

by (3), and wn is monotone by (4), we have that (zn)n≥M and (wn)n≥M are both

sequences of non-positive or non-negative integers. We know that |zn+N | > 2n−1 and

wn ≥ 2n−2 using (2), together with the fact that x1 > 1, and so 2x1−1 > 2, so taking

any M ≥ N + log2(|γ| + 2) suffices. As N =
⌈
log2

α
β

⌉
, taking M =

⌈
log2

(|γ|+3)α
β

⌉
,

as per the statement of the lemma, satisfies the desired condition. �

Before we apply Lemma 6.4.1 to show that some of these solution languages are

EDT0L, we need to add constants to the differences of multiples of solutions.

Lemma 6.4.8. Let (xn), (yn) ⊆ Z≥0 be sequences of solutions to Pell’s equation

X2 −DY 2 = 1. Let α, β ∈ Z≥0 and γ ∈ Z. Let (zn), (tn) ⊆ Z be sequences defined

by zn = αxn − βyn and tn = zn + γ. Then

1. The sequence (sn)n≥1 ⊆ Z defined by sn = zn−zn−1+γ satisfies for all n ∈ Z≥2,

tn = (2x1 − 1)zn−1 + sn−1, sn = (2x1 − 2)zn−1 + sn−1;

2. If γ ∈ Z and M =
⌈
log2

(γ+2)α
β

⌉
, then (tn)n≥M ⊆ Z≥0 or (tn)n≥M ⊆ Z≤0;

3. If (tn)n≥M is a sequence of non-negative integers then (sn)n≥M and (zn)n≥M

are, and if (tn)n≥M is a sequence of non-positive integers then (sn)n≥M and

(zn)n≥M are;

Proof We start with (1). Let wn = zn − zn−1, for all n ∈ Z>0. If n ∈ Z>0, then

using Lemma 6.4.7

tn = zn + γ

= (2x1 − 1)zn−1 + wn−1 + γ

= (2x1 − 1)zn−1 + sn−1,

sn = wn + γ

= (2x1 − 2)zn−1 + wn−1 + γ

= (2x1 − 2)zn−1 + sn−1.

127

Chapter 6: Equations in the Heisenberg group

Parts (2) and (3) follow by Lemma 6.4.7 (5). �

To allow us to show space complexity properties, we need bounds of many of the

integers we have introduced.

Lemma 6.4.9. Let S be the set of all non-negative solutions (as ordered pairs)

to Pell’s equation X2 − DY 2 = 1. Let α, β ∈ Z>0 and γ ∈ Z, and M =

max
(

2,
⌈
log2

(|γ|+3)α
β

⌉)
. Let zn = αxn − βyn and tn = zn + γ for all n ∈ Z≥0.

Let wn = zn − zn−1 and sn = wn + γ for all n ∈ Z>0.

Then there is a function f that is logarithmic in α, β and |γ|, and a function g that

is linear in D, such that log(xM), log(yM), log |zM |, log |wM |, log |tM | and log |sM |

are all bounded by fg.

Proof Lemma 6.4.6, together with the fact that (xn) is strictly increasing, im-

plies that xn ≤ (2x1)n for all n ≥ 1. Thus xM ≤ (2x1)M = (2x1)dlog2
(|γ|+3)α

β e =⌈
(|γ|+2)α

β

⌉
x
dlog2

(|γ|+2)α
β e

1 . Using Lemma 6.4.5, we have that

log(xM) ≤ log

⌈
(|γ|+ 3)α

β

⌉
+

⌈
log2

(|γ|+ 3)α

β

⌉
log(x1)

≤ log(α + 1) + log(|γ|+ 4) + log(β + 1) + (log(α + 1) + log(|γ|+ 4) + log(β + 1))
√
D(log 4D + 2)

≤ (log(α + 1) + log(|γ|+ 4) + log(β + 1))(2 + 3D).

Since yM < xM , we have that log(yM) is also bounded by (log(α + 1) + log(|γ| +

4) + log(β + 1))(2 + 3D).

Let n ≥ 1. Then, using the fact that αxn and β(yn + 1) are both at least 1, we have

log |zn| = log |αxn − βyn|

= log(α) + log(xn) + log(β) + log(yn + 1)

≤ log(α) + log(xn) + log(β) + log(yn) + 1.

Using the fact that xM and yM are bounded by (log(α+ 1) + log(|γ|+ 4) + log(β +

128

Chapter 6: Equations in the Heisenberg group

1))(2 + 3D), we now have that zM ≤ 2(log(α + 1) + log(|γ| + 4) + log(β + 1))(2 +

3D) + log(α) + log(β) + 1.

We have that wM = zM−zM−1. Noting that M−1 ≥ 1, xM−1 ≤ xM and yM−1 ≤ yM ,

it follows that

log |wM | = log |zM − zM−1|

≤ log |zM |+ log |zM−1|

≤ 2 log(α) + 2 log(β) + 4(log(α + 1) + log(|γ|+ 4) + log(β + 1))(2 + 3D)(2 + 3D) + 2.

Since tM = zM + γ and sM = wM + γ, we have that tM and sM are bounded by the

same expressions as zM and wM if γ = 0. Otherwise,

log |tM | ≤ log |zM |+ log |γ|

≤ 2(log(α + 1) + log(|γ|+ 4) + log(β + 1))(2 + 3D) + log(α) + log(β) + 1 + log(|γ|),

log |sM | ≤ log |wM |+ log |γ|

≤ log(α) + 2 log(β) + 4(log(α + 1) + log(|γ|+ 4) + log(β + 1))(2 + 3D) + 2 + log |γ|.

Taking f = 4(log(α+ 1) + log(|γ|+ 4) + log(β + 1)) + 2 and g = 2 + 3D, the result

follows. �

We have now completed the set up to show that the solution language to Pell’s equa-

tion is always EDT0L. More than that, we can show that applying linear functions

to the variables will still give this outcome. We need the bounds on the size of our

extended alphabet and images of endomorphisms so that we can apply Lemma 6.3.5

later on.

Lemma 6.4.10. Let S be the set of all non-negative solutions (as tuples) to Pell’s

equation X2 −DY 2 = 1, and α, β, γ, δ, ε, ζ ∈ Z. Then

1. The language L = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ S} is EDT0L;

129

Chapter 6: Equations in the Heisenberg group

2. A #-separated EDT0L system H for L is constructible in NSPACE(fg), where

f is logarithmic in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|), and g is linear in D;

3. The systemH is h1h2-bounded, where h1 is linear in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|),

and h2 is exponential in D.

Proof Let zn = αxn +βyn and tn = zn + γ for n ∈ Z≥0, and sn = zn− zn−1 + γ for

n ∈ Z>0. Let Mγ = max
(

2,
⌈
log2

(|γ|+3)α
β

⌉)
, Mζ = max

(
2,
⌈
log2

(|ζ|+3)α
β

⌉)
, and

M = max(Mγ, Mζ). We will first construct an EDT0L system for

K = {atn | n ∈ Z≥M)}.

If α ≤ 0 and β ≥ 0, or α ≥ 0 and β ≤ 0, Lemma 6.4.8 tells us that the sequences

(tn)n≥M , (zn)n≥M and (sn)n≥M satisfy the conditions of Lemma 6.4.1, and thus K

is accepted by an EDT0L system H = ({a, a−1}, C, ⊥, θϕ∗ψ).

If α and β are both non-negative or non-positive, then

zn = α(x1xn−1+Dy1yn−1)+β(y1xn−1+x1yn−1) = (αx1+βy1)xn−1+(αDy1+βx1)yn−1.

This, together with the recurrence relations in Lemma 6.4.3, gives that (zn)n≥M ,

(xn)n≥M and (yn)n≥M satisfy the conditions of Lemma 6.4.1, and so in we also have

in this case that L is accepted by an EDT0L system H = ({a, a−1}, C, ⊥, θϕ∗ψ).

We next consider the space complexity in which H can be constructed. By Lemma

6.4.5, log(x1) and log(y1) are both bounded by 2 + 3D. By Lemma 6.4.9, log(xM),

log(yM), log |zM |, log |tM | and log |sM | are all bounded by fg, where f is logarithmic

in |α|, |β|, |γ| and |ζ|, and g is linear in D. Thus we can use Lemma 6.4.1 (2) to

say that H is constructible in NSPACE(fg). We also know from Lemma 6.4.1 (4),

that |C| and max{|cφ| | c ∈ C, φ ∈ {ψ, θ, ϕ}} are both bounded in terms of an

exponential function of fg. Thus |C| and max{cφ | c ∈ C, φ ∈ {ψ, θ, ϕ}} are both

bounded by h1h2 where h1 is linear in |α|, |β|, |γ| and |ζ|, and h2 is exponential in

D.

Let ẑn = δx + εy and t̂n = ẑn + ζ for n ∈ Z≥0, and ŝn = ẑn − ẑn−1 + ζ for n ∈ Z>0.

130

Chapter 6: Equations in the Heisenberg group

With the same arguments we used to show K is accepted by H, we have that

{bt̂n | n ∈ Z≥M},

is accepted by an EDT0L system Ĥ = ({b, b−1}, D, $, σρ∗τ). In addition, Ĥ

is constructible in NSPACE(f̂ ĝ), and |D| and max{|cφ| | c ∈ D, φ ∈ {σ, ρ, τ}}

are both bounded by ĥ1ĥ2, where f̂ and ĥ1 are logarithmic and linear respectively

in |δ|, |ε|, |γ| and |ζ|, and ĝ and ĥ2 are linear and exponential respectively in D.

Redefining f , g, h1 and h2 to be the sum of themselves and their hatted versions,

gives that both H and Ĥ are constructible in NSPACE(fg). In addition, |C|, |D|,

max{|cφ| | c ∈ C, φ ∈ {ψ, θ, ϕ}} and max{|cφ| | c ∈ D, φ ∈ {σ, ρ, τ}} are all

bounded by h1h2.

Without loss of generality, we can assume that C and D are disjoint, and # /∈ C∪D.

For each endomorphism φ ∈ {ψ, θ, ϕ, σ, ρ, τ}, let φ̄ ∈ End (C ∪D ∪ {#})∗ be

defined to be the extension of φ to C ∪ D ∪ {#} which acts as the identity on

wherever it was not previously defined on. It follows that

P = {atn#bt̂n | n ∈ Z≥M}

is accepted by the #-separated EDT0L system G = ({a, a−1, b, b−1, #}, C ∪D ∪

{#}, ⊥ #$, θσ(ϕρ)∗ψτ).

Since H and Ĥ are constructible in NSPACE(fg), so is G. In addition, |C∪D∪{#}|

is bounded by h1h2 + 1, and max{|cφ̄| | c ∈ C ∪D ∪ {#}, φ ∈ {ψ, θ, ϕ, σ, ρ, τ}}

is bounded by h1h2. Redefining h2 to be h2 + 1, gives that G satisfies all of the

conditions of the lemma.

We now consider the language

Q = {atn#bt̂n | n ∈ {0, . . . , M − 1}}

Note that using Lemma 6.3.3, it now suffices to show that Q is accepted by a #-

separated EDT0L system that is constructible in NSPACE(fg), and whose extended

alphabet and images of letters under endomorphisms in the alphabet of the rational

131

Chapter 6: Equations in the Heisenberg group

control are bounded by h1h2.

Let E = {⊥1, ⊥2, a, a
−1, b, b−1, #}. We will use E as our extended alphabet, and

⊥1 # ⊥2 as our start symbol. For each n ∈ {0, . . . , M − 1}, define πn ∈ End(E∗)

by

cπn =

atn c =⊥1

bt̂n c =⊥2

c otherwise.

It follows that Q is accepted by the #-separated EDT0L system

F = ({a, a−1, b, b−1, #}, E, ⊥1 # ⊥2, {π0, . . . , πM−1}).

Note that t0 = α + γ, t̂0 = δ + ζ. Thus log |t0| and log |t̂0| are both bounded by a

logarithmic function f1 in terms of |α|, |β|, |γ|, |δ|, |ε| and |ζ|. By redefining f to be

f +f1, we have that log |t0| and log |t̂0| are bounded by fg. In addition, log |tM | and

log |t̂M | are both bounded by fg. Since (tn) and (t̂n) are monotone, and terms are

effectively computable by Lemma 6.4.8, each πn can be constructed in NSPACE(fg).

As E and ⊥1 # ⊥2 are constructible in constant space, it follows that F is also

constructible in NSPACE(fg).

We have that |t0| and |t̂0| are bounded by a linear function f3 in terms of |α|, |β|,

|γ|, |δ|, |ε| and |ζ|. By redefining h1 to be h1 + f3, we have that |t0|, |t̂0|, |tM | and

|t̂M | are all bounded by h1h2, and thus max{|cπi| | c ∈ E, i ∈ {0, . . . , M −1}} and

|E| are both bounded by h1h2. �

6.5 Quadratic equations in the ring of integers

Having completed the work on Pell’s equation, we now consider more general quadratic

equations in the ring of integers, working up to an arbitrary two-variable equation.

Our main goal is to show that the solution language to an arbitrary two-variable

quadratic equation is EDT0L, with an EDT0L system that is constructible in non-

deterministic polynomial space. We start with the general Pell’s equation.

132

Chapter 6: Equations in the Heisenberg group

Definition 6.5.1. A general Pell’s equation is an equation X2 −DY 2 = N in the

ring of integers, where X and Y are variables, N ∈ Z\{0} and D ∈ Z>0 is not a

perfect square.

A non-negative integer solution (x, y) to the general Pell’s equation X2−DY 2 = N

is called primitive if gcd(x, y) = 1.

Before we can generalise Lemma 6.4.10 to a general Pell’s equation, we first generalise

it to the primitive solutions to a general Pell’s equation. The following result allows

us to construct primitive solutions to a general Pell’s equation from the solutions to

the corresponding Pell’s equation, and a given primitive solution.

Lemma 6.5.2 ([4], Section 4.1). Let (x0, y0) be a primitive solution to the general

Pell’s equation X2 − DY 2 = N . Let (un, vn) be the sequence of solutions (as

described in Lemma 6.4.3) to U2 −DV 2 = 1. Define ((xn, yn))n ⊆ Z2
≥0 by

xn = x0un +Dy0vn, yn = y0un + x0vn.

Then (xn, yn) is a primitive solution to X2 −DY 2 = N for all n ∈ Z≥0.

We will put an equivalence relation on the set of primitive solutions to a general

Pell’s equation. This will allow us to consider one class at a time, then use Lemma

6.3.3 to take the union.

Definition 6.5.3. Let (x, y) and (x′, y′) be primitive solutions to the general

Pell’s equation X2 − DY 2 = N . If there exists a primitive solution (x0, y0) such

that (x, y) = (xm, ym) and (x′, y′) = (xn, yn), for some m, n ∈ Z≥0 (using the

construction in Lemma 6.5.2), we say (x, y) and (x′, y′) are associated with each

other.

Lemma 6.5.4. Association of primitive solutions to a general Pell’s equation is an

equivalence relation.

Equivalence classes of primitive solutions, which we will call classes, have a notion

of a fundamental solution, similar to the fundamental solution to Pell’s equation.

133

Chapter 6: Equations in the Heisenberg group

Definition 6.5.5. The class of a primitive solution (x, y) of a general Pell’s equation

is the equivalence class of all primitive solutions associated with (x, y).

The fundamental solution of a class of primitive solutions to a general Pell’s equation

is the minimal element of the class.

We will need the following bounds for the space complexity results.

Lemma 6.5.6 ([4], Theorem 4.1.1 and Theorem 4.12). Let (x0, y0) be the fun-

damental solution of a class of primitive solutions to the general Pell’s equation

X2 − DY 2 = N . Let (u1, v1) be the fundamental solution to X2 − DY 2 = 1. If

N > 0, then

0 ≤ x0 ≤
√
N(u1 + 1)

2
, 0 < y0 ≤

v1

√
N√

2(u1 + 1)
.

If N < 0, then

0 ≤ x0 ≤
√
|N |(u1 − 1)

2
, 0 < y0 ≤

v1

√
|N |√

2(u1 − 1)
.

Since the size of fundamental solutions to a general Pell’s equation is bounded, there

can only be finitely many, and hence only finitely many classes.

Lemma 6.5.7. There are finitely many classes of primitive solutions to a general

Pell’s equation.

We now show that the results stated in Lemma 6.4.10 hold for primitive solutions

to a general Pell’s equation. We use the characterisation in Lemma 6.5.2 to reduce

the problem to Pell’s equation, and then apply Lemma 6.4.10.

Lemma 6.5.8. Let S be the set of primitive solutions to the general Pell’s equation

X2 −DY 2 = N , and α, β, γ, δ, ε, ζ ∈ Z. Then

1. The language L = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ S} is EDT0L;

2. A #-separated EDT0L system H for L is constructible in NSPACE(fg), where

f is logarithmic in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D), and g is linear in

D;

134

Chapter 6: Equations in the Heisenberg group

3. The systemH is h1h2-bounded, where h1 is linear in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |),

and h2 is exponential in D.

Proof Since finite unions of EDT0L languages are EDT0L, and the properties in

(2) and (3) are preserved (Lemma 6.3.3), using Lemma 6.5.7 it is sufficient to show

that for any class of primitive solutions K, the language

M = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ K}

is accepted by an EDT0L system that satisfies the conditions (2) and (3). Let

((un, vn))n be the sequence of non-negative integer solutions to X2−DY 2 = 1. Let

(x0, y0) be the fundamental solution in K. Then we can write elements of K as

(xn, yn), where

xn = x0un +Dy0vn, yn = y0un + x0vn,

for some n ∈ Z≥0. For any n ∈ Z≥0,

αxn + βyn + γ = α(x0un +Dy0vn) + β(y0un + x0vn) + γ

= (αx0 + βy0)un + (αDy0 + βx0)vn + γ,

δxn + εyn + ζ = δ(x0un +Dy0vn) + ε(y0un + x0vn) + ζ

= (δx0 + εy0)un + (δDy0 + εx0)vn + ζ

Note that, by Lemma 6.5.6 and Lemma 6.4.5

log(x0) =
1

2
log

(
N(u1 + 1)

2

)
≤ log(N) + log(u1 + 1) ≤ 2 + 3D + log(N),

log(y0) ≤ log(v1

√
N) ≤ 2 + 3D + log(N).

135

Chapter 6: Equations in the Heisenberg group

Thus

log |δx0 + εy0| ≤ log(|δ|(x0 + 1)) + log(|ε|(y0 + 1))

≤ log |δ|+ log |ε|+ log(x0) + log(y0) + 2

≤ log |δ|+ log |ε|+ 2 + 6D + 2 log(N),

log |δDy0 + εx0| ≤ log(|δ|D(y0 + 1)) + log(|ε|(x0 + 1))

≤ log |δ|+ log |ε|+ log(D) + log(x0) + log(y0) + 2.

Note that the above inequalities also hold with δ replaced by α, and ε replaced by

β. The result now follows from Lemma 6.4.10. �

We now consider all solutions to a general Pell’s equation. We start with a reduction

from a non-primitive solution to a primitive solution.

Lemma 6.5.9. Let (x, y) ∈ Z2
≥0, and let k = gcd(x, y). Then (x, y) is a solution

to the general Pell’s equation X2 −DY 2 = N if and only if k2|N , and
(
x
k
, y
k

)
is a

primitive solution to the general Pell’s equation X2 −DY 2 = N
k2

.

Proof We have x2 −Dy2 = N if and only if

N

k2
=
x2 −Dy2

k2
=
(x
k

)2

−D
(y
k

)2

.

�

It is now possible to generalise Lemma 6.5.8 to all solutions to a general Pell’s

equation.

Lemma 6.5.10. Let S be the set of all solutions to the general Pell’s equation

X2 −DY 2 = N , and α, β, γ, δ, ε, ζ ∈ Z. Then

1. The language L = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ S} is EDT0L;

136

Chapter 6: Equations in the Heisenberg group

2. A #-separated EDT0L system H for L is constructible in NSPACE(fg), where

f is logarithmic in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D), and g is linear in

D;

3. The systemH is h1h2-bounded, where h1 is linear in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D),

and h2 is exponential in D.

Proof First note that the following are equivalent:

1. (x, y) ∈ S;

2. (x, −y) ∈ S;

3. (−x, y) ∈ S;

4. (−x, −y) ∈ S.

Since we can use Lemma 6.3.3 to take finite unions of EDT0L languages, and preserve

space complexity of EDT0L systems, it therefore suffices to show that

M = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ is a non-negative integer solution to X2−DY 2 = N}

is accepted by an EDT0L system that satisfies (2) and (3). Using Lemma 6.5.9,

all non-negative integer solutions to X2 − DY 2 = N are of the form (xk, yk)

where (x, y) is a primitive solution to X2 −DY 2 = N
k2

, for some k such that k2|N .

Moreover, if (x, y) is a primitive solution to X2 − DY 2 = N
k2

, then (xk, yk) is a

solution to X2 −DY 2 = N . We will therefore show two claims:

1. The languageMk = {aαkx+βky+γ#bδkx+εky+ζ | (x, y) is a primitive solution to X2−

DY 2 = N
k2
} is EDT0L for all k ∈ Z>1 such that k2|N ;

2. The union of the languages Mk is EDT0L, and accepted by a #-separated

EDT0L system H that satisfies (2) and (3);

3. The extended alphabet and endomorphisms in H satisfy the conditions in (3).

Since M equals this union, the result follows.

First note that if k ∈ Z≥2 is such that k2|N , then k < N . Thus log(αk) = log(α) +

log(k) ≤ log(α) + log(N). If we use β, δ or ε in place of α, this inequality will still

hold. Thus the first claim follows from Lemma 6.5.8.

137

Chapter 6: Equations in the Heisenberg group

For the second claim, we can apply Lemma 6.3.3 repeatedly, once for each k ∈ Z≥2

such that k2|N . We need to do this for all such k. This could be done by cycling

through all k ∈ {2, . . . , N − 1}, checking if k2|N , and then applying the lemma in

those cases. We would need to store the ‘current’ k to do this, which would use at

most log(N) bits.

�

Before attempting to tackle the general two-variable quadratic equations, we men-

tion the result we can obtain so far for a general Pell’s equation. The space complex-

ity in this case is log-linear, which is better than the log-quartic space complexity

we have for arbitrary two-variable quadratic equations.

Proposition 6.5.11. The solution language to the general Pell’s equation X2 −

DY 2 = N is EDT0L, accepted by an EDT0L system that is constructible in non-

deterministic log-linear space, with max(D, |N |) as the input size.

Proof This follows by first taking α = β = δ = ε = 1 and γ = ζ = 0 in Lemma

6.5.10, and then applying a free monoid homomorphism that maps b to a, using

Theorem 3.3.2. �

In order to understand the solutions to a generic two-variable quadratic equation,

we must first know the solutions to the equation X2 +DY 2 = N , where N, D ∈ Z.

Whilst we have considered the ‘hardest’ case of D < 0, −D non-square and N 6= 0,

it remains to consider the remaining cases. We start with the case when D ≥ 0.

Lemma 6.5.12. Let S be the set of all solutions to the equation X2 + DY 2 = N ,

with N ∈ Z, D ∈ Z≥0, and α, β, γ, δ, ε, ζ ∈ Z. Then

1. The language L = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ S} is EDT0L;

2. A #-separated EDT0L system H for L is constructible in NSPACE(f), where

f is logarithmic in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D);

3. The systemH is h-bounded, where h is linear in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D).

138

Chapter 6: Equations in the Heisenberg group

Proof If N < 0, there is nothing to prove, as the equation has no solutions. So

suppose N ≥ 0. Then all solutions (x, y) to this equation satisfy |x| + |y| ≤ N .

Let (x, y) be such a solution. Then {aαx+βy+γ#bδx+εy+ζ} is accepted by the EDT0L

system ({a, a−1, b, b−1, #}, {a, a−1, b, b−1, #}∪{⊥1, ⊥2}, ⊥1 # ⊥2, ϕ), where

ϕ is defined by

cϕ =

aαx+βy+γ c =⊥1

bδx+εy+ζ c =⊥2

c otherwise.

We have that this EDT0L system satisfies the conditions stated in (2) and (3). Thus

we can use Lemma 6.3.3 to obtain the result. �

We now consider the solutions to the equation X2 −DY 2 = N when D is square.

Lemma 6.5.13. Let S be the set of all solutions to the equation X2 − DY 2 = N ,

with N ∈ Z, D ∈ Z≥0, such that D is a perfect square. Let α, β, γ, δ, ε, ζ ∈ Z.

Then

1. The language L = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ S} is EDT0L;

2. A #-separated EDT0L system H for L is constructible in NSPACE(f), where

f is logarithmic in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D);

3. The systemH is h-bounded, where h is linear in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D).

Proof As D is square, we have that D = E2 for some E ∈ Z≥0. Define a new

variable V = EY . Substituting this into X2 − DY 2 = N gives X2 − V 2 = N ,

which is again equivalent to (X − V)(X + V) = N . If (x, v) is a solution, then

x + v and x− v must both divide N , and thus |x + v| ≤ |N | and |x− v| ≤ |N |. It

follows that there are finitely many solutions (x, v) to X2 − V 2 = N , all of which

satisfy |x| ≤ |N | and |v| ≤ N . Thus there are finitely many solutions (x, y) to

X2 −DY 2 = N , all of which satisfy |x| ≤ |N | and |y| ≤ |V | ≤ |N |.

We can use the same argument we used in Lemma 6.5.12, to show that each of the

singleton languages {aαx+βy+γ#bδx+εy+ζ} are accepted by EDT0L systems satisfying

the conditions in (2) and (3). We can again use Lemma 6.3.3 to union these to form

L. �

139

Chapter 6: Equations in the Heisenberg group

We finally need to consider the case when N = 0.

Lemma 6.5.14. Let S be the set of all solutions to the equation X2 − DY 2 = 0,

with D ∈ Z≥0, and α, β, γ, δ, ε, ζ ∈ Z. Then

1. The language L = {aαx+βy+γ#bδx+εy+ζ | (x, y) ∈ S} is EDT0L;

2. A #-separated EDT0L system H for L is constructible in NSPACE(f), where

f is logarithmic in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, D);

3. The systemH is h-bounded, where h is linear in max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|, |N |, D).

Proof First note that (x, y) is a solution if and only if x =
√
Dy. It follows that

if D is non-square, then this admits no solutions, and there is nothing to prove. If

D is square, then the result follows from Lemma 6.5.13. �

Combining the different cases of the equation X2 + DY 2 = N allows us to use

Lagrange’s method to show the following. The proof follows the arguments given in

[89], Section 1.

Theorem 6.5.15. Let

αX2 + βXY + γY 2 + δX + εY + ζ = 0 (6.2)

be a two-variable quadratic equation in the ring of integers, with a set S of solutions.

Then

1. The language L = {ax#by | (x, y) ∈ S} is EDT0L;

2. Taking the input size to be max(|α|, |β|, |γ|, |δ|, |ε|, |ζ|), an EDT0L system

for L is constructible in NSPACE(n4 log n).

Proof Let D = β2−4αγ, E = βδ−2αε and F = δ2−4αζ, and define new variables

U = DY + E and V = 2αX + βY + δ. Then

1. V 2 = 4α2X2 + β2Y 2 + δ2 + 4αβXY + 4αδX + 2βδY ;

2. DY 2 = β2Y 2 − 4αγY 2;

3. 2EY = 2βδY − 4αεY ;

140

Chapter 6: Equations in the Heisenberg group

4. F = δ2 − 4αζ.

Thus

V 2 −DY 2 − 2EY − F = 4α2X2 + 4αβXY + 4αδX + 4αγY 2 + 4αεY + 4αζ.

It follows that (6.2) can be rewritten as

V 2 = DY 2 + 2EY + F.

This is equivalent to

DV 2 = (DY + E)2 +DF − E2.

By substituting U for DY + E, and setting N = E2 − DF , we can conclude that

(6.2) can be written as

U2 −DV 2 = N. (6.3)

Note that

Y =
U − E
D

, X =
V − βY − δ

2α
=
V D − βU + βE − δD

2αD
.

Let T be the set of solutions to (6.3). By Lemma 6.5.10, Lemma 6.5.12, Lemma

6.5.13 or Lemma 6.5.14 (dependent on whetherD is positive and non-square, positive

and square, or non-positive, and whether or not N = 0) we have that

M = {aDV−βU+βE−δD#bU−E | (u, v) ∈ T}

is accepted by a #-separated EDT0L systemH, which is constructible in NSPACE(fg),

where f is logarithmic in max(|D|, |β|, |βE− δD|, |E|), and g is linear in |D|. Let

C be the extended alphabet of H, and let B be an alphabet the rational control of

H is regular. Using Lemma 6.5.10, 6.5.10, Lemma 6.5.12, Lemma 6.5.13 or Lemma

6.5.14, we also have that |C| and max{|cφ| | c ∈ C, φ ∈ B} are bounded by h1h2,

where h1 is linear in max(|D|, |β|, |βE − δD|, |E|), and h2 is exponential in |D|.

141

Chapter 6: Equations in the Heisenberg group

We have that D = β2−4αγ and N = E2−DF = (βδ−2αε)2−(β2−4αγ)(δ2−4γζ).

It follows that f is logarithmic in max(|α|, |β|, |γ|, |δ|, |ε|), and g is quadratic in

max(|α|, |β|, |γ|).

In addition, h1 is quartic in max(|α|, |β|, |γ|, |δ|, |ε|), and h2 isO(2n
2
) in max(|α|, |β|, |γ|).

Note that DY = U − E and 2αDX = DV − βU + βE − δD. Thus we have that

M = {a2αDx#bDy | (x, y) ∈ S}.

By Lemma 6.3.5, it follows that L is EDT0L, and accepted by an EDT0L system

that is constructible in NSPACE(n4 log n). �

Using Theorem 3.3.2 to apply the free monoid homomorphism that maps b to a to

a language described in Theorem 6.5.15 gives the following:

Corollary 6.5.16. The solution language to a two-variable quadratic equation in in-

tegers is EDT0L, accepted by an EDT0L system that is constructible in NSPACE(n4 log n),

with the input size taken to be the maximal absolute value of a coefficient.

6.6 From Heisenberg equations to integer equa-

tions

This section aims to prove that the solution language to an equation in one variable

in the Heisenberg group is EDT0L. We do this by showing that a single equation E

in the Heisenberg group is ‘equivalent’ to a system SE of quadratic equations in the

ring of integers. The idea of the proof is to replace each variable in E with a word

representing a potential solution, and then convert the resulting word into Mal’cev

normal form. The equations in SE occur by equating the exponent of the generators

to 0.

We start with an example of an equation in the Heisenberg group.

Example 6.6.1. We will transform the equation XYX = 1 in the Heisenberg

142

Chapter 6: Equations in the Heisenberg group

group into a system over the integers. Using the Mal’cev normal form we can write

X = aX1bX2cX3 and Y = aY1bY2cY3 for variables X1, X2, X3, Y1, Y2, Y3 over the

integers. Replacing X and Y in XYX = 1 in these expressions gives

aX1bX2cX3aY1bY2cY3aX1bX2cX3 = 1. (6.4)

After manipulating this into Mal’cev normal form, we obtain

a2X1+Y1b2X2+Y2c2X3+Y3+X1Y2+X1X2+Y1X2 = 1. (6.5)

As this normal form word is trivial if and only if the exponents of a, b and c are all

equal to 0, we obtain the following system over Z:

2X1 + Y1 = 0 (6.6)

2X2 + Y2 = 0

2X3 + Y3 +X1Y2 +X1X2 + Y1X2 = 0.

Note that the variables corresponding to the exponent of c in X and Y , namely X3

and Y3, only appear in linear terms in the above system.

In this specific example it is not hard to enumerate the solutions in a somewhat

reasonable manner. We can start by replacing occurrences of Y1 and Y2 in the third

equation of (6.6) with −2X1 and −2X2, respectively, to give that (6.6) is equivalent

to

Y1 = −2X1

Y2 = −2X2

2X3 + Y3 − 2X1X2 +X1X2 − 2X1X2 = 0.

143

Chapter 6: Equations in the Heisenberg group

This simplifies to

Y1 = −2X1

Y2 = −2X2

2X3 + Y3 = 3X1X2.

We can now enumerate all values of (X1, X2, X3) (across Z), and each such choice

will fix the values of Y1, Y2 and Y3, for which there will always exist a solution.

Using this method, we have that the solution set to (6.6) is equal to

{(x1, x2, x3, −2x1, −2x2, 3x1x2 − 2x3) | x1, x2, x3 ∈ Z}.

Translating this back into the language of the Heisenberg group gives that the so-

lution set to XYX = 1 is

{(ax1bx2cx3 , a−2x1b−2x2c3x1x2−2x3) | x1, x2, x3 ∈ Z}.

The following definition allows us to transform an equation in a single variable in

the Heisenberg group into a system of equations in the ring of integers. This is

done by representing the variables as expressions in Mal’cev normal form, plugging

these expressions back into the equation, and then converting the resulting word

into Mal’cev normal form. After doing this, the exponents of the generators can the

be equated to 0, which yields a system of equations in the ring of integers.

Definition 6.6.2. If w = 1 is an equation in a class 2 nilpotent group, consider the

system of equations over the integers defined by taking the variable X, and viewing

it in Mal’cev normal form by introducing new variables: X = aX1bY1cZ1 , where the

X1, X2 and X3 take values in Z. The resulting system of equations over Z obtained

by setting the expressions in the exponents equal to zero is called the Z-system of

w = 1.

144

Chapter 6: Equations in the Heisenberg group

Example 6.6.3. The Z-system of the equation (6.4) from Example 6.6.1 is

2X1 + Y1 = 0

2X2 + Y2 = 0

2X3 + Y3 +X1Y2 +X1X2 + Y1X2 = 0.

We now explicitly calculate the Z-system of an arbitrary equation in one variable in

the Heisenberg group.

Lemma 6.6.4. Let

Xε1ai1bj1ck1 · · ·Xεnainbjnckn = 1 (6.7)

be a single equation in one variable in the Heisenberg group, where ε1, . . . , εn ∈

{−1, 1}, and i1, . . . in, j1, . . . , jn, k1, . . . , kn ∈ Z. Define

δr =

 0 εr = 1

1 εr = −1.

Writing X = aX1bX2cX3 with X1, X2 and X3 over Z gives that the Z-system of (6.7)

is

n∑
r=1

(εrX1 + ir) = 0

n∑
r=1

(εrX2 + jr) = 0

n∑
r=1

(εrX3 + kr + δrX1X2) +
n∑
r=1

r∑
s=1

(εrεsX1X2 + εrX1js) +
n∑
r=1

r∑
s=1

(irεsX2 + irjs) = 0.

Proof We proceed as in Example 6.6.1. Replacing each occurrence of X in (6.7)

with aX1bX2cX3 gives

(aX1bX2cX3)ε1ai1bj1ck1 · · · (aX1bX2cX3)εnainbjnckn = 1. (6.8)

145

Chapter 6: Equations in the Heisenberg group

Since c is central, we can push all occurrences of c and c−1 to the right, and then

freely reduce, thus showing that 6.7 is equivalent to

(aX1bX2)ε1ai1bj1 · · · (aX1bX2)εnainbjnc
∑n
r=1(εrX3+kr) = 1. (6.9)

Note that for all x1, x2 ∈ Z, (ax1bx2)−1 = b−x2a−x1 = a−x1b−x2cx1x2 . Using this,

together with the fact that c is central, gives that (6.9) is equivalent to

aε1X1bε1X2ai1bj1 · · · aεnX1bεnX2ainbjnc
∑n
r=1(εrX3+kr+δrX1X2) = 1. (6.10)

We now push all as in (6.10) to the left. The as at the beginning do not need to

move. The as with exponent i1 will need to move past bε1X2 , thus increasing the

exponent of c by i1ε1X2. The as with exponent ε2X1 will need to move past bj1

and bε1X2 , thus increasing the exponent of c by j1ε2X1 + ε1ε2X1X2. This continues

up to the as with exponent in, which will need to move past all bs, thus increasing

the exponent of c by in(
∑n

r=1 εrX2) + in
∑n−1

r=1 jr. Overall, we have that (6.10) is

equivalent to

a

n∑
r=1

(εrX1 + ir)

(6.11)

b

n∑
r=1

(εrX2 + jr)

c

n∑
r=1

(εrX3 + kr + δrX1X2) +
n∑
r=1

r∑
s=1

(εrεsX1X2 + εrX1js) +
n∑
r=1

r∑
s=1

(irεsX2 + irjs)

= 1.

Equating each of the exponents to 0 (as we are now in Mal’cev normal form) gives

146

Chapter 6: Equations in the Heisenberg group

that the Z-system of (6.7) is

n∑
r=1

(εrX1 + ir) = 0

n∑
r=1

(εrX2 + jr) = 0

n∑
r=1

(εrX3 + kr + δrX1X2) +
n∑
r=1

r∑
s=1

(εrεsX1X2 + εrX1js) +
n∑
r=1

r∑
s=1

(irεsX2 + irjs) = 0.

�

We have now collected the results we need to prove the main theorem of this section.

Theorem 6.6.5. Let L be the solution language to a single equation with one vari-

able in the Heisenberg group, with respect to the Mal’cev generating set and normal

form. Then

1. The language L is EDT0L;

2. An EDT0L system for L is constructible in NSPACE(n8(log n)2).

Proof Let

Xε1ai1bj1ck1 · · ·Xεnainbjnckn = 1 (6.12)

be an equation in the Heisenberg group in a single variable. By Lemma 6.6.4, we

have that the Z-system of (6.12) is

n∑
r=1

(εrX1 + ir) = 0 (6.13)

n∑
r=1

(εrX2 + jr) = 0

n∑
r=1

(εrX3 + kr + δrX1X2) +
n∑
r=1

r∑
s=1

(εrεsX1X2 + εrX1js) +
n∑
r=1

r∑
s=1

(irεsX2 + irjs) = 0.

We consider two cases: when
∑n

r=1 εr = 0 and when
∑n

r=1 εr 6= 0.

Case 1:
∑n

r=1 εr = 0.

147

Chapter 6: Equations in the Heisenberg group

Applying our case assumption to (6.13) gives that (6.13) is equivalent to

n∑
r=1

ir = 0 (6.14)

n∑
r=1

jr = 0

n∑
r=1

(kr + δrX1X2) +
n∑
r=1

r∑
s=1

(εrεsX1X2 + εrX1js) +
n∑
r=1

r∑
s=1

(irεsX2 + irjs) = 0.

The first two of the above identities only involve constants. If one of these is not

satisfied, then (6.12) has no solutions. In such a case, L is empty, and there is

nothing to prove. So we suppose that these are satisfied. It follows that they are

redundant, and the above system is equivalent to the third equation in it (with the

addition that X3 can be anything, regardless of X1 and X2). Note that this is a

quadratic equation in integers, with variables X1 and X2. So by Theorem 6.5.15

K = {ax1#bx2 | (x1, x2) is part of a solution (6.14) for (X1, X2)}

is EDT0L, and accepted by an EDT0L system that is constructible in NSPACE(n 7→

n4 log n) in terms of the coefficients of the equation. These are

n∑
r=1

kr +
n∑
r=1

r∑
s=1

irjs,
n∑
r=1

δr +
n∑
r=1

r∑
s=1

εrεs,
n∑
r=1

r∑
s=1

εrjs,
n∑
r=1

r∑
s=1

irεs.

Note that |εr| = 1 and |δr| ≤ 1 for all r. In addition, as exponents of constants

in (6.12), each sum
∑n

r=1 ir,
∑n

r=1 jr and
∑n

r=1 kr is linear in our input. It follows

that the above expression is quadratic in our input, and so an EDT0L system for K

is constructible in NSPACE(n 7→ n8(log n)2). Applying the monoid homomorphism

that maps # to ε, followed by concatenating the above language with the EDT0L

language {c}∗, which is constructible in constant space, allows us to apply Theorem

3.3.2 to show

{ax1bx2cx3 | (x1, x2, x3) is a solution (6.14)}

is EDT0L, accepted by an EDT0L system that is constructible in NSPACE(n 7→

n8(log n)2). Since this language is L, the result follows.

148

Chapter 6: Equations in the Heisenberg group

Case 2:
∑n

r=1 εr 6= 0.

Let α =
∑n

r=1 εr, β =
∑n

r=1 ir, γ =
∑n

r=1 jr and ζ =
∑n

r=1 kr. Then we can rewrite

(6.13) as

αX1 + β = 0 (6.15)

αX2 + γ = 0

αX3 + ζ +
n∑
r=1

δrX1X2 +
n∑
r=1

r∑
s=1

(εrεsX1X2 + εrX1js) +
n∑
r=1

r∑
s=1

(irεsX2 + irjs) = 0.

If either of the first two equations have no solution, then neither does (6.12), and so

L is empty, and there is nothing to prove. We will therefore suppose that both of

these equations admit a solution. Since these are both single linear equations with

one variable, they can both admit a single solution. Let x1 be the solution for X1,

and x2 be the solution for X2. Plugging these into the third equation gives

αX3 + ζ +
n∑
r=1

δrx1x2 +
n∑
r=1

r∑
s=1

(εrεsx1x2 + εrx1js) +
n∑
r=1

r∑
s=1

(irεsx2 + irjs) = 0.

(6.16)

Note that this is a linear equation in integers with single variable X3. Hence by [47],

Corollary 3.13 and Proposition 3.16, the language

M = {cx3 | x3 is a solution to (6.16)}

is EDT0L, and accepted by an EDT0L system that is constructible in non-deterministic

quadratic space in terms of an input of length

|α|+ |ζ|+
n∑
r=1

|δrx1x2|+
n∑
r=1

r∑
s=1

(|εrεsx1x2|+ |εrx1js|) +
n∑
r=1

r∑
s=1

(|irεsx2|+ |irjs|).

As the sums of the lengths of constants in our original equation, |α|, |β|, |γ| and |ζ|

are all linear in our input. As the number of constants in our equation, n is also

linear in our input. We have that |x1| =
∣∣β
α

∣∣ ≤ |β| and |x2| =
∣∣ γ
α

∣∣ ≤ |α| are both

linear in our input. Since |εr| = 1 and |δr| ≤ 1 for all r, and the above expression

149

Chapter 6: Equations in the Heisenberg group

is quartic in our input, it follows that M is constructible in NSPACE(n4). Applying

Theorem 3.3.2 to concatenate M with the singleton language {ax1bx2}, which is

constructible in linear space, gives that

{ax1bx2cx3 | (x1, x2, x3) is a solution to (6.14)}

is EDT0L, and accepted by an EDT0L system that is constructible in NSPACE(n4).

Since this language is L, the result follows. �

150

Chapter 7

Equations in class 2 nilpotent

groups

This chapter is based on work in [64].

In this chapter we consider equations in class 2 nilpotent groups with virtually

cyclic commutator subgroups, and use this to show that the satisfiability of single

equations in virtually the Heisenberg group is decidable. This follows the method

of Duchin, Liang and Shapiro [34], although we explicitly construct the quadratic

equations in the ring of integers that equations in these class 2 nilpotent groups are

‘equivalent’.

In Section 7.1 we generalise the Mal’cev generating set and normal form from Section

6.2.2 to all class 2 nilpotent groups with a virtually cyclic commutator subgroup. We

then construct a Z-system for an equation in such a group in Section 7.2, analogous

to what was done in Section 6.6. This section follows the work of Duchin, Liang and

Shapiro [34]. We then use this to show that the satisfiability of single equations in

virtually the Heisenberg group is decidable in Section 7.3.

The explicit calculations used in Section 7.2 could be used in future work to attempt

to generalise the work in Chapter 6 to show equations have EDT0L solutions in more

class 2 nilpotent groups, as an exact definition of the sets will probably be needed to

say anything about solution languages. In addition, the fact that the satisfiability

151

Chapter 7: Equations in class 2 nilpotent groups

of equations is decidable in virtually the Heisenberg group could be extended in

future work to cover any group that is virtually a class 2 nilpotent groups with a

virtually cyclic commutator subgroup - thus generalising the work of Duchin, Liang

and Shapiro [34] to finite extensions.

7.1 Mal’cev generators

This section covers the normal form we will be using. This is a generalisation of the

Mal’cev normal form introduced in Section 6.2.2. We include the proof of uniqueness

and existence for completeness.

Lemma 7.1.1. Let G be a class 2 nilpotent group. Then G has a generating set

{a1, . . . , an, b1, . . . , br, c1, . . . , cs, d1, . . . , dt},

where n, r, s, t ∈ N\{0}, such that the dis have finite order, the cis and dis are

central, for each bi, there exists li ∈ N\{0}, such that blii ∈ [G, G], and [G, G] =

〈c1, · · · , cs, d1, . . . , dt〉.

Proof Using the fundamental theorem for finitely generated abelian groups, the

short exact sequence {1} → [G, G]→ G→ G�[G, G]→ {1} becomes

{1} −→ Zs ⊕ (Zk1 ⊕ · · · ⊕ Zkt) −→ G −→ Zn ⊕ (Zl1 ⊕ · · · ⊕ Zlr) −→ {1},

where n, r, s, t ∈ N\{0}. Let a1, . . . , an be lifts in G of standard generators for Z,

b1, . . . , br be lifts of generators of Zl1 , . . . , Zlr , respectively. Let c1, . . . , cs be a gen-

erating set for Zs, and d1, . . . , dt be generators of Zk1 , . . . , Zkt , respectively. Then

using our short exact sequence, it follows that {a1, . . . , an, b1, . . . , br, c1, . . . , cs, d1, . . . , dt}

generates G. We have that dkii = 1, for all i. As {c1, . . . , cs, d1, . . . , dt} generates

[G, G], the result follows. �

Definition 7.1.2. A generating set defined as in Lemma 7.1.1 is called a Mal’cev

generating set.

152

Chapter 7: Equations in class 2 nilpotent groups

Lemma 7.1.3. Let G be a class 2 nilpotent group and

{a1, . . . , an, b1, . . . , br, c1, . . . , cs, d1, . . . , dt},

be a Mal’cev generating set for G, where again, li is minimal (and exists) such that

blii ∈ [G, G], and the order of di is ki. Then every element of G can be expressed

uniquely as an element of the set

{ai11 · · · ainn b
j1
1 · · · bjrr c

p1
1 · · · cpss d

q1
1 · · · d

qt
t | i1, . . . , in, p1, . . . , ps ∈ Z, (7.1)

jx ∈ {0, . . . , lx − 1}, qx ∈ {0, . . . , kx − 1} for each x}.

Proof Existence: Let g ∈ G, and w be a word over our generating set that repre-

sents g. As all cis and dis are central, we can push them to the back of w, and into

the desired order. As [ai, aj], [bi, bj], and [ai, bj] can be written as expressions using

the cis and dis, for all i and j, we have that reordering the ais and bis to the desired

form simply creates expressions using the cis and dis, which can then be pushed

to the back of w, and into the stated order. Let i ∈ {1, . . . , r}. By definition,

[G, G]blii = [G, G], so we can reduce bi modulo li by creating an expression over

the cis and dis, which, again, can be pushed to the back and into the desired form.

Since the dis have finite order, we can reduce their exponents modulo these orders.

Uniqueness: It suffices to show that any expression of this form is non-trivial when-

ever at least one of the exponents is non-zero. So let i1, . . . , in+r+s+t ∈ Z be such

that

ai11 · · · ainn b
in+1

1 · · · bin+rr c
in+r+1

1 · · · cin+r+ss d
in+r+s+1

1 · · · din+r+s+tt = 1.

If φ : G→ G�[G, G] is the quotient map, then applying this to the above expression

gives

(φ(a1))i1 · · · (φ(an))in(φ(b1))in+1 · · · (φ(br))
in+r = 1.

As the ais and bis are lifts to G of generators of the corresponding cyclic groups, we

have that the above expression of φ(ai)s and φ(bi)s is in the (standard) normal form

153

Chapter 7: Equations in class 2 nilpotent groups

for Zn ⊕ (Zl1 ⊕ · · · ⊕ Zlr), and so i1 = · · · = in+r = 0. It follows that

c
in+r+1

1 · · · cin+r+ss d
in+r+s+1

1 · · · din+r+s+tt = 1.

But this expression is in the normal form for Zs⊕ (Zk1 ⊕ · · ·⊕Zkt), and so in+r+1 =

· · · = in+r+s+t = 0. �

Definition 7.1.4. The normal form defined in Lemma 7.1.3 is called the Mal’cev

normal form.

Notation 7.1.5. We define a number of invariants for a group G with the Mal’cev

generating set

{a1, . . . , an, b1, . . . , br, c1, . . . , cs, d1, . . . , dt},

where again, li is minimal (and exists) such that blii ∈ [G, G] and the order of di is

ki.

1. From Lemma 7.1.1, we have that [ai, aj], [bi, bj], [ai, bj] ∈ c∗1 · · · c∗sd∗1 · · · d∗t ,

for all i, j, with i < j in the first two expressions. For all such i and j,

k ∈ {1, . . . , s}, and l ∈ {1, . . . , t}, we can therefore define πijk, τijk, υijk,

αijl, βijl and γijl to be the unique integers satisfying the following normal form

expressions in [G, G]:

[aj, ai] = c
πij1
1 · · · cπijss d

αij1
1 · · · dαijtt , (i < j)

[bj, bi] = c
τij1
1 · · · cτijss d

βij1
1 · · · dβijtt , (i < j)

[ai, bj] = c
υij1
1 · · · cυijss d

γij1
1 · · · dγijtt .

2. Since blii ∈ [G, G], we can define ξik and ηil for all i ∈ {1, . . . , r}, k ∈

{1, . . . , s} and l ∈ {1, . . . , t}, to be the unique integers such that

blii = cξi11 · · · cξiss d
ηi1
1 · · · d

ηit
t .

154

Chapter 7: Equations in class 2 nilpotent groups

7.2 Transforming equations in nilpotent groups

into equations over Z

This section aims to prove that a single equation E in a class 2 nilpotent group is

equivalent to a system SE over the ring Z of quadratic equations and congruences

that may also contain ‘floor terms’. The idea of the proof is to replace each variable

in E with a word representing a potential solution, and then convert the resulting

word into Mal’cev normal form. The linear equations in SE occur by equating the

exponent of each generator ai to 0, and the linear congruences, quadratic equations

and quadratic congruences occur when the same is done for the bis, cis and dis,

respectively. Recall that Example 6.6.1 gave an example of an equation in the

Heisenberg group, and a method of solving it using Mal’cev normal form.

Example 7.2.1. Let G be the class 2 nilpotent group with the presentation

〈a1, a2, b, c, d | c = [a1, a2], d = [a1, b] = [a2, b], b
2 = c, d2 = 1,

[a1, c] = [a1, d] = [a2, c] = [a2, d] = [b, c] = [b, d] = 1〉.

Consider the equation

Xba1cXa2c
−3a1X = 1 (7.2)

We first convert the constants into Mal’cev normal form, and push the commutators

to the right to obtain

Xa1bXa1a2Xc
−3d−1 = 1.

Using the fact that d2 = 1 gives that this is equivalent to

Xa1bXa1a2Xc
−3d = 1. (7.3)

As in Example 6.6.1, we set X = aX1
1 aX2

2 bX3cX4dX5 using our Mal’cev normal form,

155

Chapter 7: Equations in class 2 nilpotent groups

for new variables X1, . . . , X5 over Z. Plugging this into (7.3) gives

aX1
1 aX2

2 bX3cX4dX5a1ba
X1
1 aX2

2 bX3cX4dX5a1a2a
X1
1 aX2

2 bX3cX4dX5c−3d = 1. (7.4)

We can the transform this into Mal’cev normal form, to (first) obtain

a3X1+2
1 a3X2+1

2 b3X3+1c3X4+X1(1+X2+X2)+X1X2−3 (7.5)

d3X5+X2(X3+1+X3)+X1(X3+1+X3)+(X3+1+X3)+(X3+1+X3)+X2(1+X3)+X1(1+X3)+X3+2+1 = 1.

Simplifying this gives

a3X1+2
1 a3X2+1

2 b3X3+1c3X1X2+X1+3X4−3d3X1X3+3X2X3+4X1+4X2+5X3+3X5+5 = 1. (7.6)

Using the relations b2 = c and d2 = 1, we can conclude

a3X1+2
1 a3X2+1

2 b(X3+1) mod 2c3X1X2+X1+3X4−3+bX3+1
2 c+X3d(X1X3+X2X3+X3+X5+1) mod 2 = 1.

(7.7)

This results in the following system of equations over (the ring) Z

3X1 + 2 = 0 (7.8)

3X2 + 1 = 0

X3 + 1 ≡ 0 mod 2

3X1X2 +X1 +X3 +

⌊
X3 + 1

2

⌋
+ 3X4 − 3 = 0

X1X3 +X2X3 +X3 +X5 + 1 ≡ 0 mod 2.

As 3X1 + 2 = 0 admits no integer solutions, we can conclude that (7.2) does not

admit a solution.

Definition 7.2.2. Let w be a word over an alphabet of the form Σ, where every

letter in Σ has an assigned inverse letter. The exponent sum of w with respect to a

156

Chapter 7: Equations in class 2 nilpotent groups

letter a ∈ Σ is defined by

expsuma(w) = #a(w)−#a−1(w).

Notation 7.2.3. Let G be a class 2 nilpotent group, X1, . . . , XN be variables,

where N ∈ Z>, and

Xε1
p1
· · ·XεK

pK
= 1 (7.9)

be an equation over G with no constants, where p1, . . . , pK ∈ {1, . . . , N} and

ε1, . . . , εK ∈ {−1, 1}. We will use the notation introduced in Lemma 7.1.1 for

the generators, and (ν1, . . . , νN) will be a potential solution to (7.9), with each νz

expressed as a word in Mal’cev normal form. For each Mal’cev generator a, define

νz,a = expsuma(νz).

We denote these in bold in order to make clear these represent variables (or at least

potential solutions to variables) as opposed to the constants that appear from the

choice of G.

The following lemma converts an equation of the form of (7.9) into a system of

equations and congruences over Z. This is done by expressing the variables as ex-

pressions in Mal’cev normal form, plugging these expressions back into the equation,

and then converting the resulting word into Mal’cev normal form. After doing this,

the exponents of the generators can be equated to 0 or set congruent to 0, which

yields the system stated.

Lemma 7.2.4. The words ν1, . . . , νN form a solution to (7.9) in G if and only if

157

Chapter 7: Equations in class 2 nilpotent groups

the following equations and congruences hold:

K∑
z=1

εzνpz ,am = 0, for all m ∈ {1, . . . , n}, (7.10)

K∑
z=1

εzνpz ,bm ≡ 0 mod lm, for all m ∈ {1, . . . , r}, (7.11)

K∑
z=1

εzνz,cm +
K∑

u<z=1

n∑
i<j=1

πijmεzεuνpz ,aiνpu,aj +
K∑

u<z=1

n
r∑
i=1
j=1

υijmεzεuνpz ,aiνpu,bj (7.12)

+
K∑

u<z=1

r∑
i<j=1

τijmεzεuνpz ,biνpi,bj +
K∑
z=1

r∑
i=1

ξim

⌊
εzνpz ,bi
li

⌋
= 0, for all m ∈ {1, . . . , s},

K∑
z=1

νz,dm +
K∑

u<z=1

n∑
i<j=1

αijmεzεuνpz ,aiνpu,aj +
K∑

u<z=1

n
r∑
i=1
j=1

γijmεzεuνpz ,aiνpu,bj (7.13)

+
K∑

u<z=1

r∑
i<j=1

βijmεzεuνpz ,biνpu,bj +
K∑
z=1

r∑
i=1

ηim

⌊
εzνpz ,bi
li

⌋
≡ 0 mod km,

for all m ∈ {1, . . . , t},

where the πijks, τijks, υijks, αijks, βijks, and γijks are defined as in Notation 7.1.5

and represent constants. The εzs are defined as in Notation 7.2.3, and represent

constants. The potential solutions for the variables are the νz,as, for a generator a

and are defined in Notation 7.2.3.

Proof Consider (7.9) with the potential solution (ν1, . . . , νN) plugged in. We

obtain

νε1p1 · · ·ν
εK
pK

= 1.

As νz = a
νz,a1
1 · · · aνz ,ann b

νz,b1
1 · · · bνz,brr c

νz,c1
1 · · · cνz,css d

νz,d1
1 · · · dνz,dtt , replacing these in

158

Chapter 7: Equations in class 2 nilpotent groups

the above equation gives

(a
νp1,a1
1 · · · aνp1,ann b

νp1,b1
1 · · · bνp1,brr c

νp1,c1
1 · · · cνp1,css d

νp1,d1
1 · · · dνp1,dtt)ε1 · · · (7.14)

(a
νpK,a1
1 · · · aνpK,ann b

νpK,b1
1 · · · bνpK,brr c

νpK,c1
1 · · · cνpK,css d

νpK,d1
1 · · · dνpK,dtt)εK = 1.

We now convert the left hand side of (7.14) into Mal’cev normal form. This is done

from (6.4) to (6.5) in Example 6.6.1, and from (7.4) to (7.7) in Example 7.2.1. We

start by pushing all commutators to the right, which gives that (7.14) is equivalent

to

(a
νp1,a1
1 · · · aνp1,ann b

νp1,b1
1 · · · bνp1,brr)ε1 · · · (aνpK,a11 · · · aνpK,ann b

νpK,b1
1 · · · bνpK,brr)εK

s∏
m=1

c

K∑
z=1

εzνpz ,cm

m

t∏
m=1

d

K∑
z=1

εzνpz ,dm

m = 1.

Using Notation 7.1.5, if i < j, then ajai = aiaj[aj, ai] = aiajc
πij1
1 · · · cπijss d

αij1
1 · · · dαijtt

and bjbi = bibjc
τij1
1 · · · cτijss d

βij1
1 · · · dβijtt . Similarly, for any i and j,

bjai = aibjc
υij1
1 · · · cυijss d

γij1
1 · · · dγijtt .

We will use this to reorder all of the subwords (a
νpz,a1
1 · · · aνpz,ann b

νpz,b1
1 · · · bνpz,brr)εz

into a word within (a±1)∗ · · · (a±n)∗(b±1)∗ · · · (b±r)∗(c±1)∗ · · · (c±s)∗(d±1)∗ · · · (d±t)∗, subject

to ‘creating’ some additional commutators, which are then pushed to the right.

Note that if εz = 1, then the word is already in the desired form, so consider when

εz = −1. Let w be such a subword. Then

w = b
−νpz,br
r · · · b−νpz,b11 a−νpz,ann · · · a−νpz,a11 .

We will start at the right, and push terms to the left. We have that the a1s will have

to be pushed past everything (except each other), the a2s will need to be pushed

past everything except the a1s, and so on up to the br−1s, which will only need to

be pushed past the brs, and the brs which will not need to be pushed past anything,

159

Chapter 7: Equations in class 2 nilpotent groups

as they will now be in the correct place. Thus

w =a
−νpz,a1
1 · · · a−νpz,ann b

−νpz,b1
1 · · · b−νpz,brr

s∏
m=1

c

n∑
i<j=1

πijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

υijmνpz ,aiνpz ,bj +
r∑

i<j=1

τijmνpz ,biνpz ,bj

m

t∏
m=1

d

n∑
i<j=1

αijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

γijmνpz ,aiνpz ,bj +
r∑

i<j=1

βijmνpz ,biνpz ,bj

m .

Now consider the general case for εz ∈ {−1, 1}. Let δi = 1 if i = −1 and δi = 0

otherwise. We have

w =a
εzνpz,a1
1 · · · aεzνpz,ann b

εzνpz,b1
1 · · · bεzνpz,brr

s∏
m=1

c

δεz

 n∑
i<j=1

πijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

υijmνpz ,aiνpz ,bj +
r∑

i<j=1

τijmνpz ,biνpz ,bj

m

t∏
m=1

d

δεz

 n∑
i<j=1

αijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

γijmνpz ,aiνpz ,bj +
r∑

i<j=1

βijmνpz ,biνpz ,bj

m .

We now use the rules ajai = aiaj[aj, ai] = aiajc
πij1
1 · · · cπijss d

αij1
1 · · · dαijtt , for i < j

and bjai = aibjc
υij1
1 · · · cυijss d

γij1
1 · · · dγijtt , for any i and j to push all of the ais to the

left, ordered from a1 to an, and push all commutators ‘created’ by this action to the

right, to obtain that (7.14) is equivalent to

160

Chapter 7: Equations in class 2 nilpotent groups

1 = a

K∑
z=1

εzνpz ,a1

1 · · · a

K∑
z=1

ενpz ,an

n b
ε1νp1,b1
1 · · · bε1νp1,brr · · · bεzνpz ,b11 · · · bεzνpz ,brr

s∏
m=1

c

K∑
z=1

εzνpz ,cm + δεz

 n∑
i<j=1

πijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

υijmνpz ,aiνpz ,bj +
r∑

i<j=1

τijmνpz ,biνpz ,bj

m

+
K∑

u<z=1

n∑
i<j=1

πijmεzεuνpz ,aiνpu,aj +
K∑

u<z=1

n
r∑
i=1
j=1

υijmεzεuνpz ,aiνpu,bj

t∏
m=1

d

K∑
z=1

εzνpz ,dm + δεz

 n∑
i<j=1

αijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

γijmνpz ,aiνpz ,bj +
r∑

i<j=1

βijmνpz ,biνpz ,bj

m

+
K∑

u<z=1

n∑
i<j=1

αijmεzεuνpz ,aiνpu,aj +
K∑

u<z=1

n
r∑
i=1
j=1

γijmεzεuνz,aiνu,bj

.

We now reorder the bis. Again, we use Notation 7.1.5 to say bjbi = bibjc
τij1
1 · · · cτijss d

βij1
1 · · · dβijtt

for i < j. Reordering the bis, and pushing all commutators to the right, gives that

(7.14) is equivalent to

161

Chapter 7: Equations in class 2 nilpotent groups

1 = a

K∑
z=1

εzνpz ,a1

1 · · · a

K∑
z=1

ενpz ,an

n b

K∑
z=1

εzνpz ,b1

1 · · · b

K∑
z=1

ενpz ,br

r

s∏
m=1

c

K∑
z=1

εzνpz ,cm +
K∑
z=1

δεz

 n∑
i<j=1

πijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

υijmνpz ,aiνpz ,bj +
r∑

i<j=1

τijmνpz ,biνpz ,bj

m

+
K∑

u<z=1

 n∑
i<j=1

πijmεzεuνpz ,aiνpu,aj +

n
r∑
i=1
j=1

υijmεzεuνpz ,aiνpu,bj +
r∑

i<j=1

τijmεzεuνpz ,biνpu,bj

t∏
m=1

d

K∑
z=1

εzνpz ,dm + δεz

 n∑
i<j=1

αijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

γijmνpz ,aiνpz ,bj +
r∑

i<j=1

βijmνpz ,biνpz ,bj

m

+
K∑

u<z=1

 n∑
i<j=1

αijmεzεuνpz ,aiνpu,aj +

n
r∑
i=1
j=1

γijmεzεuνpz ,aiνpu,bj +
r∑

i<j=1

βijmεzεuνpz ,biνpu,bj

.

Next, we reduce each bi modulo li, as in (7.6) to (7.7) in Example 7.2.1. We have

from Notation 7.1.5 that blii = cξi11 · · · cξiss d
ηi1
1 · · · d

ηit
t . Doing this, then pushing all

commutators to the right implies that (7.14) is equivalent to

162

Chapter 7: Equations in class 2 nilpotent groups

1 = a

K∑
z=1

εzνpz ,a1

1 · · · a

K∑
z=1

ενpz ,an

n b

(
K∑
z=1

εzνpz ,b1

)
mod l1

1 · · · b

(
K∑
z=1

ενpz ,br

)
mod lr

r

s∏
m=1

c

K∑
z=1

εzνpz ,cm + δεz

 n∑
i<j=1

πijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

υijmνpz ,aiνpz ,bj +
r∑

i<j=1

τijmνpz ,biνpz ,bj

m

+
K∑

u<z=1

 n∑
i<j=1

πijmεzεuνpz ,aiνpu,aj +

n
r∑
i=1
j=1

υijmεzεuνpz ,aiνpu,bj +
r∑

i<j=1

τijmεzεuνpz ,biνpu,bj

+
K∑
z=1

r∑
i=1

ξim

⌊
εzνpz ,bi
li

⌋

t∏
m=1

d

K∑
z=1

εzνpz ,dm + δεz

 n∑
i<j=1

αijmνpz ,aiνpz ,aj +

n
r∑
i=1
j=1

γijmνpz ,aiνpz ,bj +
r∑

i<j=1

βijmνpz ,biνpz ,bj

m

+
K∑

u<z=1

 n∑
i<j=1

αijmεzεuνpz ,aiνpu,aj +

n
r∑
i=1
j=1

γijmεzεuνpz ,aiνpu,bj +
r∑

i<j=1

βijmεzεuνpz ,biνpu,bj

+
K∑
z=1

r∑
i=1

ηim

⌊
εzνpz ,bi
li

⌋
.

The right hand side of the identity above is in normal form, excepting the fact that

the exponents of the dis are not necessarily reduced with respect to their modulari-

ties. It follows that this identity is satisfied if and only if the exponents of the ais,

bis, and cis all equal zero, and the exponent of each di is congruent to 0 modulo ki.

Thus (ν1, . . . , νN) is a solution if and only if the exponents satisfy these conditions,

163

Chapter 7: Equations in class 2 nilpotent groups

and the result follows. �

Definition 7.2.5. If w = 1 is an equation in a class 2 nilpotent group, con-

sider the system of equations over the integers defined by taking each variable

V , and viewing it in Mal’cev normal form by introducing new variables: V =

aW1
1 · · · aWn

n bX1
1 · · · bXrr cY11 · · · cYss d

Z1
1 · · · dZtn , where the Wis, Xis, Yis and Zis take values

in Z. The resulting system of equations and congruences over Z obtained by setting

the expressions in the exponents equal to zero is called the Z-system of w = 1.

The following example demonstrates the method used in the proof of Lemma 7.2.7;

that is that any equation in G is equivalent to a system of equations that consists

of one equation with no constants, and finitely many equations of the form X = g,

for some variable X, and a constant g ∈ G.

Example 7.2.6. Let G be a group, and consider the equation

X2gY −1XhZ = 1, (7.15)

where g, h ∈ G. Then (7.15) is equivalent to the system

X2W1Y
−1XW2Z = 1

W1 = g

W2 = h.

To do this, notice that we can obtain (7.15) from the above system by substituting

W1 and W2 for g and h, respectively.

Lemma 7.2.7. The Z-system of any equation in a class 2 nilpotent group is equiva-

lent to a system of the form of Lemma 7.2.4, together with finitely many (additional)

linear equations and linear congruences.

Proof We have that any equation in a class 2 nilpotent group G is equivalent

to a system of comprising one equation Xε1
p1
· · ·XεK

pK
= 1 with no constants, and

164

Chapter 7: Equations in class 2 nilpotent groups

equations of the form Xz = g, for some variable Xz and g ∈ G. Let g ∈ G, and Xz

be a variable. We have that g is represented by a word

g = a
ga1
1 · · · agann b

gb1
1 · · · bgbrr c

gc1
1 · · · cgcss d

gd1
1 · · · d

gdt
t

in Mal’cev normal form, where gµ ∈ Z for any generator µ. Then the Z-system of

Xz = g is

Xz,ai = gai for each i ∈ {1, . . . , n}

Xz,bi ≡ gbi mod li for each i ∈ {1, . . . , r}

Xz,ci = gci for each i ∈ {1, . . . , s}

Xz,di ≡ gdi mod ki for each i ∈ {1, . . . , n},

These equations and congruences are linear, as required. �

We now restate Lemma 7.2.7 up to grouping constants, and renaming constants

and variables. We also add new constants κji and χji, which any system of the

form of Lemma 7.2.7 will have as 0, however, after ‘plugging’ linear equations back

into these equations, these constants will not necessarily be 0. We also note that if

there is a variable X in the equation w = 1, such that expsumX(w) 6= 0, then the

coefficient in of νX,cm in the exponent of cm will be non-zero for all m. This follows

as this coefficient equals expsumX(w).

Proposition 7.2.8. The Z-system of a single equation w = 1 in a class 2 nilpotent

group is equivalent to a finite system of linear equations and congruences in Z,

together with the following equations and congruences for finitely many j and k:

n∑
i=1

−αjiYji + fj(X1, . . . , Xm) +
m∑
i=1

εji

⌊
βjiXi + κji

γji

⌋
= 0, (7.16)

gk(X1, . . . , Xm) +
m∑
i=1

ζki

⌊
µkiXi + χki

λki

⌋
≡ 0 mod δk, (7.17)

where the values with Greek alphabet names are all constants, easily computed from

165

Chapter 7: Equations in class 2 nilpotent groups

the class 2 nilpotent group and the single equation, X1, . . . , Xm are variables which

appear in the linear equations and congruences, Yj1, . . . , Yjn are variables which do

not appear in any of the linear equations and congruences, for each j and the fjs

and gks are quadratic functions.

Moreover, if there is a variable X such that expsumX(w) 6= 0, then there exists i

such that αji 6= 0 for all j.

7.3 Equations in virtually Heisenberg groups

Within this section, we look at how equations behave when passing to a finite index

overgroup. From [34], we know that the single equation problem is decidable in

any class 2 nilpotent group with a virtually cyclic commutator subgroup. We show

that the satisfiability of single equations in groups that are virtually the Heisenberg

group is decidable, which is due to the straightforward nature of its automorphisms.

Further work could be to extend this to virtually any class 2 nilpotent group with

a virtually cyclic commutator subgroup, or to attempt to show the solutions in

virtually the Heisenberg group are EDT0L. Throughout this section, we will use the

following presentation for the Heisenberg group H(Z):

H(Z) = 〈a1, a2, c | [a1, a2] = c〉.

Lemma 7.3.1 ([46], Proposition 4.4.3). Let θ be any automorphism of the Heisen-

berg group. Then there exist linear functions f, g : Z2 → Z, a quadratic function

h : Z2 → Z and α ∈ Z such that

θ(ai1a
j
2c
k) = a

f(i, j)
1 a

g(i, j)
2 cαk+h(i, j). (7.18)

Moreover, f , g, h and k can be computed from the action of φ on the generators a1,

a2 and c.

Remark 7.3.2. In the statement of [46], Proposition 4.4.3, the fact that f , g, h

and k can be computed from the action of θ on the generators is not mentioned

166

Chapter 7: Equations in class 2 nilpotent groups

within the statement of the proposition. However, the proof explicitly calculates

them from a matrix representative of the image of θ within the outer automorphism

group, together with an inner automorphism, both of which can be computed from

the action of θ on the generators, which gives the required statement.

Definition 7.3.3. Let G be a finitely generated group. The single (twisted) equa-

tion problem in G is the decidability question as to whether there is a terminating

algorithm that accepts a (twisted) equation w = 1 as input, returns yes if w = 1

admits a solution and no otherwise, where elements of G within w are represented

by words over a finite generating set, and automorphisms are represented by their

action on the finite generating set.

The following lemma is widely known, although often not stated explicitly. Varia-

tions of it have been used to show systems of equations in virtually free groups, or

virtually abelian groups are decidable, or to describe the structure of solution sets

(see for example [26] or [31]). We include a proof for completeness.

Lemma 7.3.4. Let G be a group with a finite index normal subgroup H, such that H

has decidable single twisted equation problem. Then G has decidable single equation

problem.

Proof Let w = 1 be an equation in G. By Lemma 4.3.7, there is a finite set S

of equations in H such that w = 1 admits a solution if and only if some equation

in E does. Since we can compute whether or not a given equation in H admits a

solution, the result follows. �

Now that we have Lemma 7.3.4, the following is (almost) all that is required to

prove that single equations in virtually Heisenberg groups are decidable.

Lemma 7.3.5. The single twisted equation problem in the Heisenberg group is de-

cidable.

Proof Let the functions f , g and h, and the integer k be defined as in Lemma 7.3.1.

Let w = 1 be a twisted equation in the Heisenberg group. We first convert this into

167

Chapter 7: Equations in class 2 nilpotent groups

a Z-system as in Section 7.2. Doing so will yield the system from Lemma 7.2.4,

except νz,a1 , νz, a2 and νz, c will be replaced with f(νz,a1 , νz,a2), g(νz,a1 , νz,a2) and

h(νz,a1 , νz,a2) + kνz,c, respectively. Let αf , αg, βf , βg, γf , γg ∈ Z be such that

f(i, j) = αf i+ βfj + γf and g(i, j) = αgi+ βgj + γg.

Applying these to an equation with no constants, as in Lemma 7.2.4, gives that the

associated Z-system of w = 1 with the potential solutions ν1, . . . , νN plugged in,

is

K∑
z=1

(αfεzνpz ,a1 + βfεzνpz ,a2 + γf) = 0, (7.19)

K∑
z=1

(αgεzνpz ,a1 + βgεzνpz ,a2 + γg) = 0,

K∑
z=1

h(εzνpz ,a1 , εzνpz ,a2) + kεzνpz ,c +
N∑

u<z=1

f(εzνpz ,a1 , εzνpz ,a2)g(εuνpu,a1 , εuνpu,a2) = 0,

with the addition of finitely many linear equations and congruences, by Lemma

7.2.7. Here, as we only have one commutator generator, c = c1, the constant π12 is

defined to be π121, as defined in Lemma 7.2.4 and Notation 7.1.5. By rearranging

and renaming constants and variables, it follows that (7.19) is equivalent to

2N∑
i=1

δiXi + λ = 0,

2N∑
i=1

ηiXi + µ = 0,

φ(X1, . . . , X2N) =
N∑
i=1

ξiYi,

As the first two equations are linear, these can be plugged back into the third

equation to obtain another equation, which will still be quadratic, that will admit

a solution if and only if the above system does. We can use the algorithm of Siegel

[91] to determine if this single quadratic equation admits a solution. �

168

Chapter 7: Equations in class 2 nilpotent groups

Theorem 7.3.6. The single equation problem in a virtually Heisenberg group is

decidable.

Proof This follows by Lemmas 7.3.4 and 7.3.5, together with the fact that every

virtually Heisenberg group has a finite index normal Heisenberg group subgroup, a

proof of which can be found in [46], Lemma 4.5.2. �

169

Appendix A

Context-free and indexed

languages

A.1 Context-free languages

The next class up from regular in Chomsky’s hierarchy of languages is the class of

context-free languages. Unlike regular languages, automata accepting context-free

languages have a certain amount of memory, beyond the states. We do not need to

use context-free languages in this thesis, however we give the basic definitions, as

they are a standard class of languages, and give a good background for where the

classes that we do use fit into the general picture.

We start with the definition.

Definition A.1.1. A context-free grammar is a tuple G = (V, Σ, P, S), where

1. V is an alphabet, called the non-terminal alphabet ;

2. Σ is an alphabet, called the terminal alphabet, disjoint from V ;

3. P ⊆ V × (V ∪ Σ)∗ is a finite set called the set of productions. An element

(A, ω) is usually written A→ ω;

4. S ∈ V is called the start symbol.

The production A→ ω acts on words in ν ∈ (V ∪Σ)∗ by replacing a single occurrence

170

Appendix A: Context-free and indexed languages

of A within ν with ω.

A word w ∈ Σ∗ is generated by G if we can apply a sequence of productions in G to

S to obtain w. The language generated by G is the language of all words generated

by G.

A language is called context-free if it is generated by a context-free grammar.

We now give some examples of context-free languages. None of the languages men-

tioned are regular.

Example A.1.2. If w is a word, we will use ←−w to denote the word obtained by

reading w backwards. We will show that the language L = {w←−w | w ∈ {a, b}∗} is

context-free.

We define a context-free grammar for L. Our set of non-terminals will be V = {S},

our terminal alphabet will be {a, b}, our start symbol will be S, and our productions

will be

{S→ aSa, S→ bSb, S→ ε}.

Since every word that can be made starting with S using the above productions,

if we apply the third production we will end up with a word in {a, b}∗, and thus

we will not be able to apply any more productions. Before we do this, the first two

productions will allow us to generate a word to the left of the S always adding to

the end, and a word to the right of the S obtained by always adding the same letter

to the beginning. Thus any word generated will lie in L. Moreover, since we can

create any word to the left of the S, because we can add a or b whenever we want,

we can generate all words in L.

Example A.1.3. Consider the language W over all words w over {a, a−1} such

that w has the same number of occurrences of a as a−1. Equivalently, W is the

language of all words over {a, a−1} that represent the identity of the group Z,

with the presentation 〈a |〉. This language is called the word problem of Z with

respect to {a}. Whilst we will only show that W is context-free, Muller, Schupp

and Dunwoody ([74], [37]) showed that a group has a context-free word problem if

and only if it is virtually free.

171

Appendix A: Context-free and indexed languages

To show thatW is context-free, consider the context-free grammar with non-terminals

V = {S}, terminal alphabet {a, a−1}, start symbol S, and productions

{S→ SaSa−1S, S→ Sa−1SaS, S→ ε}.

If we start using the first two productions, we will always end up with a word with S

in (at least) every other position. Thus, if occurrences of S are ignored, we can use

these productions to ‘insert’ aa−1 or a−1a anywhere. Afterwards, we can use S→ ε

repeatedly to remove all non-terminals. We have now shown that the language

generated by this context-free grammar contains W .

If we generate a word using the grammar, it must have the same number of as as

a−1s, since the productions always add the same number of as as a−1s. Thus W is

accepted by this grammar, and is therefore context-free.

Like regular languages, context-free languages form a full abstract family of lan-

guages, that is they are closed under the operations in the following lemma.

Lemma A.1.4 ([58], Section 6.2). Let L and M be context-free languages over

alphabets ΣL and ΣM . Let φ : Σ∗L → Σ∗M be a free monoid homomorphism. Then

the following languages are context-free:

1. L ∪M (union);

2. L ∩K, for any regular language K (intersection with regular languages);

3. LM (concatenation);

4. L∗ (Kleene star closure);

5. Lφ (homomorphism);

6. Lφ−1 (inverse homomorphism).

Using the fact that all regular languages are defined by rational expressions (Lemma

2.4.6) with Lemma A.1.4, we can now show the following.

Lemma A.1.5. Regular languages are context-free.

An alternative method of defining context-free languages is using pushdown au-

tomata. These are a generalisation of finite-state automata, and thus imply the

172

Appendix A: Context-free and indexed languages

regular languages are context-free. We omit the definition here, however we refer

the reader to [56] or [58] for more information about context-free languages, includ-

ing pushdown automata.

A.2 Indexed languages

Indexed languages were introduced in the 1960s by Aho ([2], [3]) as a generalisation of

context-free languages. Whilst they are probably not as well-studied as context-free

and regular languages, they still occupy an important place as a full abstract family

of languages that is less restrictive than context-free, but not nearly as broad as the

large class of context-sensitive languages. We refer the reader to Aho’s papers, and

also Gilman’s exposition of formal languages [51], Section 6 for more information.

We follow the notation of [1].

Definition A.2.1. An indexed grammar is a tuple G = (V, Σ, χ, P, S), where

1. V is an alphabet, called the non-terminal alphabet ;

2. Σ is an alphabet, called the terminal alphabet, disjoint from V ;

3. χ is an alphabet, called the flag alphabet or indices, disjoint from V ∪ Σ.

Elements of V ×χ∗ are called indexed non-terminals, and the element (A, f) ∈

V × χ is denoted Af . We consider Aε and A as equal.

4. P ⊆ (V × χ)× ((V × χ) ∪ Σ)∗ is a finite set called the set of productions. An

element (Af , ω) is usually written Af → ω. All productions must be of one

of the following forms, where A, B ∈ V , ω ∈ (V ∪ Σ)∗ and f ∈ χ∗:

(a) A → ω. This production acts on words of indexed non-terminals by

replacing a single occurrence of Ag for any g ∈ χ∗, with ω, where every

non-terminal in ω is indexed with g;

(b) A → Bf , called a push production. This production acts on words of

indexed non-terminals by replacing a single occurrence of Ag for any

g ∈ χ∗, with Bgf ;

(c) Af → ω, called a pop production. This production acts on words of

indexed non-terminals by replacing a single occurrence of Agf for any

g ∈ χ∗, with ω, where every non-terminal in ω is indexed with g.

173

Appendix A: Context-free and indexed languages

5. S ∈ V is called the start symbol.

A word w ∈ Σ∗ is generated by G if we can apply a sequence of productions in G to

S to obtain w. The language generated by G is the language of all words generated

by G.

A language is called indexed if it is generated by an indexed grammar.

We give a standard example of an indexed language.

Example A.2.2. The language L = {w2 | w ∈ Σ∗} is indexed over the alphabet Σ,

but not context-free. We construct an indexed grammar for L. Let V = {S, T, U}.

Let Σ̂ = {â | a ∈ Σ} be a disjoint copy of Σ. Let χ = Σ̂∪{$}. Consider the indexed

grammar G = (V, Σ, χ, P, S), where the set P of productions equals

{S→ T$} ∪ {T→ Tâ | a ∈ Σ} ∪ {T→ UU, Uâ → Ua, U$ → ε}.

Any word generated by G starts with S, and we are then forced to go through the

production S → T$. After this, a (possibly empty) sequence of productions of the

form T→ Tâ will be performed to obtain T$ŵ for some w ∈ Σ∗. Following this, we

must apply T→ UU, as otherwise we are in the case we just considered. Thus we

have U$ŵU$ŵ. We are now forced pop off each index from U to obtain UuUu,

where u is the reverse of w. We can now only apply U$ → ε twice, and we end up

with u2, and so G only generates words in L. Since we can choose the order that

flags are pushed to T, we can obtain T$ŵ for all w ∈ Σ∗, and thus all words in L

are generated by G.

Since indexed grammars are a generalisation of context-free grammars, we have the

following:

Lemma A.2.3. Context-free languages are indexed.

Similar to regular and context-free languages, indexed languages also form a full

abstract family of languages.

174

Appendix A: Context-free and indexed languages

Lemma A.2.4 ([51], Theorem 6.3 and Theorem 6.10). Let L and M be indexed

languages over alphabets ΣL and ΣM . Let φ : Σ∗L → Σ∗M be a free monoid homomor-

phism. Then the following languages are indexed:

1. L ∪M (union);

2. L ∩K, for any regular language K (intersection with regular languages);

3. LM (concatenation);

4. L∗ (Kleene star closure);

5. Lφ (homomorphism);

6. Lφ−1 (inverse homomorphism).

Indexed languages also have a definition using an automaton, called a ‘ nested stack

automaton’, for which we refer the reader to [51], Section 6.

175

Appendix B

L-Systems

We start with the definition of ET0L languages in Section B.1. Section B.2 covers

a definition of ET0L languages using automata instead of grammars. The next few

sections cover alternative definitions of EDT0L languages, however the equivalence

of these definitions is non-trivial. Section B.8 proves that ET0L languages are

indexed, and presents some corollaries that can be drawn from this.

Whilst we will focus on EDT0L languages, we will mention a number of other L-

systems. The acronym T0L stands for Table 0-interaction Lindenmayer, and defines

an L-system that is equivalent to an ET0L system with no extended alphabet. We

will use L-systems that are T0L systems with the following additional letters:

1. E (extended) - there is an extended alphabet;

2. D (deterministic) - tables are free monoid endomorphisms;

3. P (propagating) - tables or endomorphisms are non-erasing; that is, they map

no letter to the empty word;

4. H (homomorphism) - this language is the image of the remainder of the

acronym under a free monoid homomorphism;

5. N (non-erasing homomorphism) - this language is the image of the remainder

of the acronym under a non-erasing free monoid homomorphism;

6. W (weak coding) - this language is the image of the remainder of the acronym

under a weak coding;

176

Appendix B: L-Systems

7. C (coding) - this language is the image of the remainder of the acronym under

a coding.

B.1 ET0L languages

ET0L languages are a generalisation of EDT0L languages, and can be thought of as

a ‘non-deterministic’ variant on EDT0L languages.

In order to define an ET0L language, we first need to define a table.

Definition B.1.1. Let C be an alphabet. A table t over C is a set of tuples (c, Kc),

for each c ∈ C, and where Kc is a finite set of words over C.

Tables act as rewrite rules on words in C∗ as follows. If ω = c1 · · · cn is a word over

C, where each ci ∈ C, then the set of images of ω under a table t, denoted ωt, is

defined by

ωt = {ν1 · · · νn | (ci, Kci) ∈ t and νi ∈ Kci for all i}.

Tables t1 = {(c, Kc) | c ∈ C} and t2 = {(c, Mc) | c ∈ C} over C can be composed

to create a new table

t1t2 =

{(
c,
⋃
d∈Kc

Md

) ∣∣∣∣∣ c ∈ C
}
.

Remark B.1.2. Tables are often presented as larger sets of tuples of letters an

words, rather than tuples of letters and sets. For the work we do later on, the latter

definition is easier to generalise, so we have used this.

We give some examples of tables, and how to compose them.

Example B.1.3. Consider the alphabet C = {⊥, a, b}, and two tables over C:

t1 = {(⊥, {aba}), (a, {a, a2}), (b, {b})}, t2 = {(⊥, {⊥}), (a, {a, b}), (b, {b2})}.

177

Appendix B: L-Systems

These can be written as

t1 :

⊥ aba

a a, a2

b b

t2 :

⊥ ⊥

a a, b

b b2

.

The composition is

t1t2 :

⊥ ab2a, ab3, b3a, b4

a a, b, a2, ab, ba, b2

b b2

.

We can now define ET0L languages which are a generalisation of EDT0L languages.

We base our definitions on our definition of EDT0L languages; however, there are a

number of equivalent definitions used elsewhere, as discussed in Section 3.3.

Definition B.1.4. An ET0L system is a tuple H = (Σ, C, ω, R), where

1. Σ is an alphabet, called the (terminal) alphabet ;

2. C is a finite superset of Σ, called the extended alphabet of H;

3. ω ∈ C∗ is called the start word ;

4. R is a regular (as a language) set of tables over C, called the rational control

of H.

The language accepted by H is L(H) = Σ ∩
⋃
φ∈R ωφ.

A language that is accepted by some ET0L system is called an ET0L language.

We extend the notion of an endomorphism of a free monoid fixing a letter to tables.

Definition B.1.5. Let C be an alphabet, and let φ be a table. We say φ fixes a

letter a ∈ C if aφ = {a}.

Remark B.1.6. EDT0L systems can be viewed as ET0L systems, where for every

table φ in the rational control, and for every letter c in the extended alphabet,

|cφ| = 1. When talking about systems that could be ET0L systems or EDT0L

systems, we will often treat them as ET0L systems, with the understanding that in

the EDT0L case, we are adding the above restriction on the lengths of images.

178

Appendix B: L-Systems

B.2 CSPD Automata

Introduced by van Leeuwen [92], CSPD automata give an alternative method of

describing ET0L languages, and are sometimes easier to work with than ET0L

systems. We give a brief definition and explanation of how they work.

These machines are a generalisation of pushdown automata; they still have a finite

state control and a pushdown stack, but they also possess a second stack called

the check-stack. When attempting to read a word using a CSPD automaton, there

are two stages. The first stage comprises choosing a check-stack from the regular

language of allowed check-stacks. After it is chosen, it cannot be edited; the machine

will move up and down it without changing it.

During the second stage, the word is read letter by letter. When reading a letter a,

the machine looks at the state it is in, the letter at the top of the pushdown and

the letter within the check-stack at the same height as the pushdown, in order to

decide what to do next. It then removes the pushdown letter it looked at (possibly

ε), places a new symbol on top of the pushdown (again, possibly ε), and moves up

or down the check-stack stack, so that the length of the pushdown and the position

on the check stack always remain the same.

Definition B.2.1. A check-stack pushdown automaton (CSPD automaton) is a tu-

ple

A = (Q, Σ, Γ, ∆, ⊥, R, θ, q0, F),

where

1. Q is a finite set, called the set of states ;

2. Σ is an alphabet, called the terminal alphabet ;

3. Γ is an alphabet, called the pushdown alphabet ;

4. ∆ is an alphabet, called the check-stack alphabet ;

5. ⊥/∈ ∆ ∪ Γ is the bottom of stack symbol ;

6. R ⊆ ({⊥} ∪∆)∗ is a regular language, called the set of allowed check-stacks.

All words in R must be of the form ⊥ ω for some ω ∈ ∆∗;

179

Appendix B: L-Systems

7. θ is a finite subset of

(Q× (Σ ∪ {ε})× ((∆× Γ) ∪ {(ε, ε), (⊥, ⊥)}))× (Q× (Γ ∪ {⊥})∗),

is called the transition relation. All elements of θ must be of one of three forms

described below. Elements of the transition relation are called transitions, and

the transition ((p, a, (x, α)), (q, ω)) is usually denoted (p, a, (x, α)) →

(q, ω);

8. q0 ∈ Q is called the start state;

9. F ⊆ Q is called the set of accept states.

The three forms of transitions within the transition relation θ are:

1. (p, a, (⊥, ⊥)) → (q, ω ⊥). In this case the machine will be in state p, with

⊥ at the top of both stacks, and will see and consume a ∈ Σ ∪ {ε} as input.

It will then move to the state q, push ω onto the pushdown, and also move up

the check-stack by |ω|, so that the length of the pushdown and the position

on the check-stack remain the same.

2. (p, a, (x, α)) → (q, ω). This transition can be used when the machine is in

the state p, and sees x on the check stack, and α at the top of the pushdown,

whilst reading and consuming the input a ∈ Σ ∪ {ε}. The machine then pops

α from the pushdown, adds ω to the pushdown, moves |ω| − 1 positions up

the check-stack, and transfers to the state q.

3. (p, a, (ε, ε))→ (q, ω). This transition can be used when the CSPD automa-

ton is in the state p, with any possible symbols on both stacks, whilst seeing

and consuming a ∈ Σ ∪ {ε} as input. The machine then pushes ω onto the

pushdown, moves |ω| positions up the check-stack, and transitions into the

state q.

A word u ∈ Σ∗ is accepted by the CSPD automaton A, if there is an allowed check-

stack ω ∈ R, together with a finite sequence of transitions in θ, starting at the

state q0 with ⊥ on the pushdown, and at the bottom (also looking at ⊥) of the

check-stack, and terminating in a state within F , whilst reading u as input.

180

Appendix B: L-Systems

The language accepted by A is the set of all words accepted by A.

Whilst first proved by van Leeuwen, Bishop and Elder have recently provided a

proof of the result, using modern notation [10].

Theorem B.2.2 ([92]). A language is ET0L if and only if it is accepted by a CSPD

automaton.

B.3 EPDT0L languages

EPDT0L languages provide another equivalent definition of EDT0L languages, when

the empty word is removed. They allow us to place an assumption on EDT0L

systems that endomorphisms are non-erasing; that is, they do not map any letters

to the empty word. They have also been used to prove a pumping lemma of a sort

for EDT0L languages ([86], Section IV.3).

Theorem B.3.1. A language L is EDT0L if and only if L\{ε} is EPDT0L.

Proof Using Theorem 3.3.2, (2), we can assume ε /∈ L. Let H = (Σ, C, ω, R) be

an EDT0L system for L. We will define an EPDT0L system G based on H.

By Theorem 3.3.1, we can assume that ω =⊥ for some ⊥∈ C. The extended

alphabet of G will be D = {[c, Z] | c ∈ C, Z ⊆ C} t {F} tΣ, where F is a symbol

not already used, which we will use as a fail symbol. The terminal alphabet will be

Σ, and the start word will be [⊥, ∅].

Let B ⊆ End(C∗) be an alphabet of R. We now define the rational control of G.

For each φ ∈ B, define Φφ ⊆ End(D∗) as follows. We first define, for any Z ⊆ C,

sucφ(Z) = {U ⊆ C | Zφ = U}.

Let Φφ be the set of all ψ ∈ End(D∗), such that Fψ = F , and aψ = F , for all a ∈ Σ,

and [c, Z]ψ, where c ∈ C and Z ⊆ Σ, is defined by:

1. If cφ = d ∈ C, then [c, Z]ψ = [d, Z ′] for any Z ′ ∈ sucφ(Z);

181

Appendix B: L-Systems

2. If cφ = d1 · · · dk, where di ∈ C for all i, then

[c, Z]ψ = [di1 , {d1, . . . , di1−1} ∪ Zi1][di2 , Zi2] · · · [dip−1 , Zip−1][dip , Zip ∪ Z ′],

for any Z ′ ∈ sucφ(Z), and any 1 ≤ i1 < i2 < · · · < ip ≤ k, where

Zij = {dij+1, . . . , dij+1−1},

for all j ∈ {1, . . . , p};

3. If cφ = ε, then [c, Z] = F .

Note that Φφ is finite for all φ ∈ B. Let R̄ be the regular language of endomorphisms

of D∗ obtained from C by replacing each φ with the finite set Φφ. Let θ ∈ End(D∗)

be defined by [a, ∅]θ = a, for all a ∈ Σ. We take the rational control of G to be R̄θ.

First note that G is indeed an EPDT0L system, as neither θ nor an endomorphism

in any Φφ maps anything to ε. The symbol F is used as a ‘fail symbol’. That is to

say, if φ ∈ End(D∗) is such that [⊥, ∅]φ = σFτ , then all for all ψ ∈ End(D∗), the

word [⊥, ∅]φψ will contain the letter F , and thus will not be accepted by G.

The idea of the construction is to delete any ‘branches’ of a derivation in H that

do not contribute to the word being generated. To do this, we record the minimal

alphabet of the branches we ‘plan’ on deleting within the letters of our extended

alphabet, that is, the Z within the letter [c, Z], and only when all the letters in Z

have been deleted by H, that is Z = ∅, can we replace our letters [a, Z] for a ∈ Σ

with terminal letters a. If we every ‘try’ to delete a letter that was not marked as

a letter for deletion, we instead map that letter to F , as we can only accept words

that are accepted by H with deletion by marking the letters that are deleted for

deletion first. Note that this method will create many new derivations that accept

nothing. �

182

Appendix B: L-Systems

B.4 The Copying Lemma

Whilst the pre-image of an EDT0L language under a monoid homomorphism is

not always an EDT0L language, sometimes this is the case. The Copying Lemma,

proved by Ehrenfeucht, Rozenberg and Skyum ([40], [42]), allows this to be done in

certain cases. Ciobanu and Elder recently noted that this result also preserves space

complexity [19].

Theorem B.4.1 ([40], Theorem 1; [42], Theorem 3.3; [19], Lemma 5.2). Let Σ1 and

Σ2 be disjoint alphabets, and K1 ⊆ Σ∗1 and K2 ⊆ Σ∗2 be languages. Let f : K1 → K2

be a bijection. If

K = {w(wf) | w ∈ K1}

is ET0L, then K1, K2 and K are all EDT0L.

Moreover, if an ET0L system for K is constructible in NSPACE(f), where f : Z≥0 →

Z≥0, then there are EDT0L systems for K1, K2 and K, all of which are definable in

NSPACE(f).

B.5 DT0L languages

Before we embark on the sequence of proofs used to show that the class of HDT0L

languages is equal to the class of EDT0L languages, it is convenient to first define

DT0L languages. These are similar to EDT0L languages, except there is no extended

alphabet, and the rational control is always expressed in the form B∗, for some finite

set of endomorphisms B.

Definition B.5.1. A DT0L system is a tuple (Σ, w, B), where

1. Σ is an alphabet;

2. w ∈ Σ∗ is called the start word;

3. B is a finite set of endomorphisms of Σ∗.

A PDT0L system is a DT0L system (Σ, w, B) such that aφ 6= ε for all a ∈ Σ,

φ ∈ B.

183

Appendix B: L-Systems

A language accepted by some (P)DT0L system is called a (P)DT0L language.

Remark B.5.2. DT0L systems can be thought of as EDT0L systems, using the

definition of EDT0L systems where the rational control is of the form B∗ (Theorem

3.3.1), where the alphabet and extended alphabet coincide.

Notation B.5.3. Let Σ be an alphabet, and w ∈ Σ∗. We use alph(w) to denote

the set of letters that occur within w.

Lemma B.5.4. Singleton languages are PDT0L.

Proof Let L = {w} be a singleton language. Then L is accepted by the PDT0L

system (alph(w), w, {id}). �

B.6 HDT0L, NDT0L, WDT0L and CDT0L lan-

guages

In a series of papers ([76], [75], [38]) Ehrenfeucht, Nielsen, Rozenberg, Salomaa and

Skyum considered whether using an extended alphabet for L-systems had the same

effect as applying a homomorphism. They showed that this was the case for ET0L

systems; every ET0L language can indeed be obtained as the homomorphic image

of a T0L language. For the fact that EDT0L systems are equivalent to the set of

languages that can be obtained as homomorphic images of DT0L language, they

refer the reader to the analogous proof for ET0L and T0L. We include here a proof

of this fact for EDT0L systems using modern notation. We also use most of this

proof to consider the addition of the restriction that endomorphisms in the rational

control are non-erasing, which we view in the subsequent section.

We start with the definitions of the types of homomorphisms we will be considering,

and the corresponding L-systems we obtain using the images of DT0L languages

under these homomorphisms.

Definition B.6.1. Let Σ and ∆ be alphabets. A homomorphism φ : Σ∗ → ∆∗ is

called:

184

Appendix B: L-Systems

1. A coding if aφ ∈ ∆ for all a ∈ Σ;

2. A weak coding if aφ ∈ ∆ ∪ {ε} for all a ∈ Σ;

3. A non-erasing homomorphism if aφ 6= ε for all a ∈ Σ.

A language L is called:

1. C(P)DT0L if L = Mθ for some (P)DT0L language M , and coding θ;

2. W(P)DT0L if L = Mθ for some (P)DT0L language M , and weak coding θ;

3. N(P)DT0L if L = Mθ for some (P)DT0L language M , and non-erasing ho-

momorphism θ;

4. H(P)DT0L if L = Mθ for some (P)DT0L language M , and homomorphism θ.

We now consider the concept of ultimately periodic sets of non-negative integers.

These are sets of integers that are periodic, apart from a finite amount of transient

behaviour.

Definition B.6.2. A subset X ⊆ Z≥0 is called ultimately periodic if there exists

p, t, i1, . . . , ik ∈ Z≥0 such that ij < p for all j, and a finite subset F ⊆ {0, . . . , t−

1}, such that

X = {t+ ij + pn | j ∈ {1, . . . , k}, n ∈ Z≥0} ∪ F.

The smallest integers t and p, such that the above equality holds, are called the

threshold and period of X, and denoted Thres(X) and Per(X), respectively.

We now define the spectrum of a finite-state automaton.

Definition B.6.3. Let A be a finite state automaton, and let q be a state in A.

The spectrum of q in A, denoted Spec(A, q), is defined by

Spec(A, q) = {|x| | x labels a path in A from q to an accept state}.

The spectrum of a finite-state can be used to show that regular languages are in

some ways ‘periodic’, up to a finite amount of mess.

185

Appendix B: L-Systems

Lemma B.6.4. Let A be a finite state automaton, and let q be a state in A. Then

Spec(A, q) is ultimately periodic.

We now separate states of finite-state automata into those with infinite and finite

spectra. This is because finite spectra will not have a period.

Definition B.6.5. Let A be a finite state automaton. A state q of A is called weak

if Spec(A, q) is finite, and strong otherwise.

To avoid talking about period and threshold too frequently, and to deal with the

difference between strong and weak, we combine these notions into the uniform

period of a spectrum.

Definition B.6.6. Let A be a finite state automaton. The uniform period of A,

denoted mA, is the smallest j ∈ Z>0, such that

1. For each state q in A, j > Thres(Spec(A, q));

2. For each strong state q, j is a multiple of Per(Spec(A, q)).

We now define the spectrum of an EPDT0L system, based on our definition of a

spectrum of a finite-state automaton.

Definition B.6.7. Let G = (Σ, C, ⊥, B∗) be an EPDT0L system, and let D ⊆ C

be non-empty. The spectrum of D in G, denoted Spec(G, D), is defined by

Spec(G, D) = {|φ|B | φ ∈ B∗, where there exists w ∈ Σ∗, with alph(w) = D, wφ ∈ Σ∗}.

We now define a finite-state automaton based on an EDT0L system. As we will see,

this is constructed so that the spectrum of the finite-state automaton and that of

the EDT0L system coincide.

Definition B.6.8. Let G = (Σ, C, ⊥, B∗) be an EPDT0L system, and let D ⊆ C

be non-empty. The D-spectral representation of G, denoted AG,D, is the finite state

automaton where

1. Q = P(C)\∅ is the set of states;

186

Appendix B: L-Systems

2. B is the alphabet;

3. q0 = D is the start state;

4. F = {q ∈ Q | q ⊆ Σ} is the set of accept states;

5. For all q ∈ Q and φ ∈ B, there is a transition from q to qφ, labelled by φ.

The spectral representation of G, denoted AG is the {⊥}-spectral representation of

G.

Lemma B.6.9. Let G = (Σ, C, ⊥, B∗) be an EPDT0L system, and let D, E ⊆ C

be non-empty. Then

Spec(AG,E, D) = Spec(G, D).

Proof Note that Spec(G, D) is the set of |γ| for all γ ∈ B∗ such that γ labels a

path in AG,E from D to a subset of Σ. Note that the choice of E only affects the

start state of AG,E, which does not affect Spec(AG,E, D). Thus

Spec(AG,E, D) = {|φ|B | φ ∈ B∗, Dγ ⊆ Σ}

= {|φ|B | φ ∈ B∗, where there exists w ∈ Σ∗, with alph(w) = D, wφ ∈ Σ∗}

= Spec(G, D)

�

We now combine the lemmas we have just shown to obtain the fact that spectra of

EPDT0L systems are ultimately periodic.

Lemma B.6.10. Let G = (Σ, C, ⊥, B∗) be an EPDT0L system, and let D ⊆ C

be non-empty. Then Spec(G, D) is ultimately periodic.

Proof This follows from Lemma B.6.9, together with the fact that the spectrum

of a finite state automaton is ultimately periodic with respect to any state (Lemma

B.6.4). �

We use the previous lemma to extend the notion of a uniform period to an EPDT0L

system.

187

Appendix B: L-Systems

Definition B.6.11. Let G be an EPDT0L system. The uniform period of G, denoted

mG, is defined by mG = mAG .

We now define the indexed spectral representation of an EPDT0L system. This is

another finite state automaton defined from an EPDT0L system, except we have

added indices to the states and the productions in the alphabet, to allow us to track

where we are with respect to the uniform period.

Definition B.6.12. Let G = (Σ, C, ⊥, B∗) be an EPDT0L system, with spectral

representation AG = (Q, B, δ, q0, F). Fix an ordering on Q: Q = {u0, . . . , up},

where p = |Q| − 1. For each φ ∈ B, and i, j ∈ {0, . . . , p}, define φi,j ∈ End((C ×

{0, . . . , p})) (noting that the letter (a, i) ∈ C×{0, . . . , p} will be denoted ai), by

aiφi,j =

 bj1 · · · bjn a ∈ ui
aj a /∈ ui.

where aφ = b1 · · · bn, with bl ∈ Σ for all l. The indexed spectral representation of G,

denoted IG is the finite state automaton IG = (Q̄, B̄, δ̄, q̄0, F̄), where

1. Q̄ = {ui × {i} | i ∈ {0, . . . , p}};

2. B̄ = {φi,j | φ ∈ B, i, j ∈ {0, . . . , p} ∪ {ψi,j | i, j ∈ {0, . . . , p}};

3. q̄0 = q0 × {0} (note u0 = q0);

4. F̄ = {ui × {i} | ui ∈ F};

5. For all pairs of states ui×{i}, uj×{j} ∈ Q̄ and each φ ∈ B such that uiφ = uj,

there are two transitions from ui × {i} to uj × {j}, labelled with φi,j.

We will often refer to the indexed spectral representation of an EPDT0L system G,

where we assume some order on the states of AG has been fixed.

The indexed spectral representation of an EPDT0L system has the same spectrum

as the spectral representation, thus giving that it is uniformly periodic of the same

uniform period.

Lemma B.6.13. Let G be an EPDT0L system, and let Q be the set of states of the

188

Appendix B: L-Systems

spectral representation AG. Then for each ui ∈ Q,

Spec(AG, ui) = Spec(IG, ui).

In particular, mAG = mIG .

Notation B.6.14. Let G = (Σ, C, ⊥, B∗) be an EPDT0L system accepting a

language L, and AG = (Q, B, δ, q0, F) be the spectral representation. Fix an

order on Q = {u0, . . . , up}, and let IG = (Q̄, B̄, δ̄, q̄0, F̄) be the indexed spectral

representation.

Note that
⋃
q̄∈Q̄ q̄ ⊆ Σ × {0, . . . , p}. Define A(G, k), for k ∈ {0, . . . , mG}, to be

the language of all ai1 · · · ait ∈ (
⋃
q̄∈Q̄)∗ such that

1. a1 · · · at =⊥ φ, for some φ ∈ B∗ such that |φ|B = mG;

2. φ traces a path in AG from q0 to ui;

3. mG + k ∈ Spec(AG, ui).

For every r, s ∈ {0, . . . , p}, and k ∈ {0, . . . , mG}, let Br,s,k be the set of all words

φv0,v1 · · ·φvmG−1,vmG over B̄ of length mG, such that r = v0 and s = vmG . Let

Bk =
⋃

r,s∈{0,...,p}
mG+k∈Spec(AG ,ur)∩Spec(AG ,us)

Br,s,k.

Let Ĉ = {ci | c ∈ C, i ∈ {0, . . . , p}}. Define a homomorphism θ : Ĉ∗ → C∗ by

ciθ = c.

Fix k ∈ {0, . . . , mG}. For each w ∈ A(G, k), let HG,k,w be the PDT0L system

(Ĉ, w, Bk). Now let

MG,k,w = {x ∈ Σ+ | x = yθφ for some y ∈ L(HG,k,w), φ ∈ B∗ with |φ|B = mG + k}.

We have now set up the notation and basic lemmas we need, and we can start

the proof that EDT0L languages are CDT0L. We start by showing that languages

accepted by EPDT0L systems are the (finite) union of a finite language with the

189

Appendix B: L-Systems

languages MG,k,w. We will then go on to prove that these languages themselves are

also finite unions of CDT0L languages. At that point, it will be sufficient to show

that finite unions of CDT0L languages are CDT0L.

Lemma B.6.15. Let L be a non-empty EPDT0L language, accepted by an EPDT0L

system G. Then

L = FG ∪
⋃

k∈{0, ..., mG}
w∈A(G, k)

MG,k,w. (B.1)

Proof Let FG = {w ∈ Σ+ | w =⊥ φ for some φ ∈ B∗ with |φ|B < 2mG}. Note

that FG is finite. By construction,

FG ∪
⋃

k∈{0, ..., mG}
w∈A(G, k)

MG,k,w ⊆ L.

We now show the other direction of containment. Let u ∈ L. If u ∈ FG, then there is

nothing to prove. Otherwise, u =⊥ φ for some φ ∈ B∗, |φ| ≥ mG. Let φ = ψ1 · · ·ψr,

with each ψi ∈ B. Write r = lrmG + kr, where lr ∈ Z>0 and kr ∈ {0, . . . , mG − 1}.

Let xi = xψi for every i.

Let AG = (Q, B, δ, q0, F) be the spectral representation of G, and fix an order on

Q = {u0, . . . , up}. Let i ∈ {1, . . . , lr}. Note that ximGϕ = x, for some ϕ ∈ B∗

with |ϕ|B = (lr − i)mG + kr. So (lr − i)mG + kr ∈ Spec(AG, alph(xmG)). Recall

that Spec(AG, alph(xmG)) is an ultimately periodic set (Lemma B.6.4), with mG

greater than the threshold, and a multiple of the period. Using this, together with

the facts that mG + kr ≥ mG and (lr − i)mG + kr ∈ Spec(AG, alph(xmG)) gives that

mG + kr ∈ Spec(AG, alph(ximG)).

By construction, there is a path in AG from q0 to a vertex uji ∈ Q, labelled with

ψ1 · · ·ψi, for all i. We have that

uji = alph(⊥)ψ1 · · ·ψi = alph(⊥ ψ1 · · ·ψi) = alph(xi).

Write xmG = c1 · · · ct for letters ci ∈ C. Since alph(xmG) = uj1 , we now have that

c
jmG
1 · · · cjmGt ∈ A(G, kr).

190

Appendix B: L-Systems

Let z = c
jmG
1 · · · cjmGt , and write x(lr−1)mG = d1 · · · ds. Note that c1 · · · ctφ = x(lr−1)mG ,

for some φ ∈ B∗ with |φ|B = (lr − 2)mG. We can therefore write φ = ϕ1 · · ·ϕlr−2,

where each ϕi ∈ BmG . Moreover, since uji = alph(xi) for all i, we have that

zϕj1,j21 · · ·ϕjlr−2,jlr−1

lr−2 = d
jlr−1

1 · · · djlr−1
s .

We now show that d
jlr−1

1 · · · djlr−1
s ∈ L(HG,kr,w)). It suffices to show that each

ϕ
ji,ji+1

i ∈ Bkr . We have already shown that mG + kr ∈ Spec(AG, alph(ximG)) for all

i, and by definition, ϕ
ji,ji+1

i ∈ Bji,ji+1,kr .

Using this fact, together with the fact that there exists φ ∈ B∗ with |φ|B = mG+kr,

such that

(d
jlr−1

1 · · · djlr−1
s)θφ = x(lr−1)mGφ = x,

and so x ∈MG,kr,w, as required. �

We now show that the languagesMG,k,w are indeed finite unions of CDT0L languages.

Lemma B.6.16. Let L be a non-empty EPDT0L language, accepted by an EPDT0L

system G. Let k ∈ {0, . . . , mG}, and w ∈ A(G, k). Then MG,k,w is a finite union

of CDT0L languages.

Proof For each non-empty D ⊆ C, and i ∈ Z≥0, let ΦD,i = {φ ∈ B∗ | |φ|B =

mG + i, Dφ ⊆ Σ}. Let

Z = {ci,τ,a | ci ∈ Bk, τ ∈ ΦD, a ∈ Σ} ∪ {ci,τ,a | ci ∈ Bk, τ ∈ ΦD,k, a ∈ Σ},

where the bold versions are distinct copies of each ci,τ,a. Let φ ∈ Bk. Then φ ∈ Br,s,k

for some r, s ∈ {0, . . . , p}. For each τ ∈ ΦD,k, define φτ ∈ End(Z∗) by

cr,ρ,aφτ = ds,τ,b111 ds,τ,b122 · · ·ds,τ,b1n11 ds,τ,b212 ds,τ,b222 · · ·ds,τ,b2n22 · · · ds,τ,bv1v ds,τ,bv2v · · ·ds,τ,bvnvv

cr,ρaφτ = ε,

where cφ = d1 · · · dv, d1τ = b11 · · · b1n1 , . . . , dvτ = bv1 · · · bvnv .

191

Appendix B: L-Systems

Write w = ei1 · · · eig. Let

W (w) = {ei,τ,b111 ei,τ,b122 · · · es,τ,b1n11 · · · es,τ,bg1g es,τ,bg2g · · · es,τ,bgngg | τ ∈ Φui,mG+k, bj1 · · · bjnj = ejτ}.

Define

B = {φτ | r, s ∈ {0, . . . , p}, φ ∈ Br,s,k, τ ∈ Φus,k}.

For each y ∈ W (w), let Ek,w,y be the DT0L system (Z, y, B). Let η : Z∗ → Σ∗ be

the coding defined by (ci,τ,a)η = (ci,τ,a)η = a. Note that W (w) is finite. It therefore

suffices to show that

MG,k,w =
⋃

y∈W (w)

L(Ek,w,y)η.

Let x ∈ L(Ek,w,y) for some y ∈ W (w). Write x = a1 · · · an, where every ai ∈ Σ. Then

there exists x = zη, for some z = (ci1,τ,a111 · · · ci1,τ,a1n11 · · · civ ,τ,av1v · · · civ ,τ,avnvv) ∈ Z+.

If z = y, then z ∈ L(HG,k,w), by the construction of W (w). Otherwise, ciτ = ai, for

all i, and |τ | = mG + k. In order to show x ∈ MG,k,w, it therefore suffices to show

that ci11 · · · cinn ∈ L(HG,k,w). But ci11 · · · cinn = wφ, for some φ ∈ Bk, as required.

Now suppose x ∈MG,k,w. Then x = zθφ for some z ∈ L(HG,k,w), φ ∈ B∗ with |φ|B =

mG + k, where θ : Ĉ∗ → C∗ is the projection map. Thus there exists ψ ∈ Bk

such that wψ = z. If |ψ|Bk = 0, then z = w, and we can simply choose y =

ei,τ,b111 ei,τ,b122 · · · es,τ,b1n11 · · · es,τ,bg1g e
s,τ,bg2
g · · · es,τ,bgngg ∈ W (w) such that b11 · · · bgng = x,

x ∈ L(Ek,w,y)η.

Otherwise, pick any y ∈ W (w), and write ψ = ψ1 · · ·ψt with each ψi ∈ Bri,si,k,

noting that t ≥ 1. For each i ∈ {1, . . . , t− 1}, choose any τi ∈ Φusi ,k
. Let τt = φ.

Then

yψτ11 · · ·ψτtt = cs,τt,a111 · · · cs,τt,a1n11 · · · cs,τt,av1v · · · cs,τt,avnvv ,

where c1 · · · cn = wψ = zθ, a11 · · · avnv = zθτt = zθφ = x. Thus yψτ11 · · ·ψτtt η = x,

and x ∈ L(Ek,w,y)η, as required. �

Combining our previous lemmas gives the following.

Lemma B.6.17. A non-empty EPDT0L language is a finite union of CDT0L lan-

guages.

192

Appendix B: L-Systems

Proof Using the fact that singletons are CDT0L (Lemma B.5.4), the result follows

from Lemma B.6.15 and Lemma B.6.16. �

In order to show that EDT0L languages are CDT0L, it remains to show the following.

Lemma B.6.18. Finite unions of CDT0L languages are CDT0L.

Proof Let L and M be CDT0L languages over an alphabet Σ. Suppose L∪M 6= ∅.

There exist DT0L languages KL and KM , accepted by DT0L systems (CL, ωL, BL)

and (CM , ωM , BM), respectively, together with codings θL and θM , such that L =

KLθL and M = KMθM . By replacing CM with a copy of itself that is disjoint from

CL, and updating φM accordingly, we can assume that CL and CM are disjoint.

Let ⊥/∈ CL ∪ CM . Let C = {⊥} ∪ CL ∪ CM . For each ψ ∈ BL, define ψ̄ ∈ End(C∗)

by

cψ̄ =

 cψ c ∈ CL
c c /∈ CL.

Define ψ̄ for each ψ ∈ CM analogously. Define φL, φM ∈ End(C∗) by

cφL =

 ωL c =⊥

c c 6=⊥,
cφM =

 ωM c =⊥

c c 6=⊥ .

Let B = {ψ̄ | ψ ∈ BL ∪ BM} ∪ {φ}. Note that L 6= ∅, and so there exists u ∈ L.

Define the coding θ : C∗ → Σ∗ by

cθ =

cθL c ∈ CL
cθM c ∈ CM
u c =⊥ .

Consider the DT0L system H = (C, ⊥, B), and let K be the language it accepts.

By construction, Kθ = L ∪M . �

The fact that codings are stronger than weak codings, non-erasing homomorphisms

and homomorphisms allows us to show that that the classes listed are all equal.

193

Appendix B: L-Systems

Theorem B.6.19 ([76], Theorems 6.2-6.5). Let L be a non-empty language. Then

the following are equivalent:

1. L is EDT0L;

2. L is CDT0L;

3. L is WDT0L;

4. L is NDT0L;

5. L is HDT0L.

Proof (1) ⇒ (2): Using the fact that the class of CDT0L languages is closed

under finite unions (Lemma B.6.18), together with the fact that {ε} is CDT0L

(Lemma B.5.4), it suffices to show that L\{ε} is CDT0L. By Theorem B.3.1, L\{ε}

is EPDT0L. So by Lemma B.6.17, L\{ε} is a finite union of CDT0L languages. The

result now follows by Lemma B.6.18.

(2)⇒ (3): This follows as codings are weak codings.

(3)⇒ (1): Since DT0L languages are EDT0L, this follows by the fact that the class

of EDT0L languages is closed under applying a homomorphism (Theorem 3.3.2 (5)).

(2)⇒ (4): This follows as codings are non-erasing homomorphisms.

(4)⇒ (5): This follows as non-erasing homomorphisms are homomorphisms.

(5)⇒ (1). This also follows from Theorem 3.3.2 (5). �

B.7 WPDT0L and HPDT0L languages

We now consider what can be done if we want to assume our HDT0L systems have

only non-erasing endomorphisms. We have seen that with EDT0L systems, this

does not affect the expressive power. With NDT0L, and thus HDT0L, it does work.

The author does not believe it would be difficult to modify this proof to show that

it also works for WDT0L systems, however CDT0L systems appear harder. It may

require a different approach in order to determine whether or not the addition of

194

Appendix B: L-Systems

the assumption that endomorphisms are non-erasing affects the class of languages

that CDT0L systems accept.

Whilst these classes of languages have not been used when studying equations so

far, they have the potential to be used to show some solutions to equations in groups

cannot be expressed as EDT0L languages, as their more rigid structure is easier to

work with to show languages are not EDT0L, than the structure of EDT0L systems.

We begin by reproving Lemma B.6.16, except for WPDT0L languages, rather than

CDT0L languages.

Lemma B.7.1. Let L be a non-empty EPDT0L language, accepted by an EPDT0L

system G. Let k ∈ {0, . . . , mG}, and w ∈ A(G, k). Then MG,k,w is a finite union

of WPDT0L languages.

Proof For each non-empty D ⊆ C, and i ∈ Z≥0, let ΦD,i = {φ ∈ B∗ | |φ|B =

mG + i, Dφ ⊆ Σ}. Let

Z = {ci,τ,a | ci ∈ Bk, τ ∈ ΦD, a ∈ Σ} ∪ {ci,τ,a | ci ∈ Bk, τ ∈ ΦD,k, a ∈ Σ} ∪ {κ},

where the bold versions are distinct copies of each ci,τ,a. Let φ ∈ Bk. Then φ ∈ Br,s,k

for some r, s ∈ {0, . . . , p}. For each τ ∈ ΦD,k, define φτ ∈ End(Z∗) by

cr,ρ,aφτ = ds,τ,b111 ds,τ,b122 · · ·ds,τ,b1n11 ds,τ,b212 ds,τ,b222 · · ·ds,τ,b2n22 · · · ds,τ,bv1v ds,τ,bv2v · · ·ds,τ,bvnvv

cr,ρaφτ = κφτ = κ,

where cφ = d1 · · · dv, d1τ = b11 · · · b1n1 , . . . , dvτ = bv1 · · · bvnv .

Write w = ei1 · · · eig. Let

W (w) = {ei,τ,b111 ei,τ,b122 · · · es,τ,b1n11 · · · es,τ,bg1g es,τ,bg2g · · · es,τ,bgngg | τ ∈ Φui,mG+k, bj1 · · · bjnj = ejτ}.

Define

B = {φτ | r, s ∈ {0, . . . , p}, φ ∈ Br,s,k, τ ∈ Φus,k}.

For each y ∈ W (w), let Ek,w,y be the DT0L system (Z, y, B). Let η : Z∗ → Σ∗

195

Appendix B: L-Systems

be the weak coding defined by (ci,τ,a)η = (ci,τ,a)η = a, κη = ε. Note that W (w) is

finite. It therefore suffices to show that

MG,k,w =
⋃

y∈W (w)

L(Ek,w,y)η.

Let x ∈ L(Ek,w,y) for some y ∈ W (w). Write x = a1 · · · an, where every ai ∈ Σ.

Then there exists x = zη, for some

z = (κδ0ci1,τ,a111 κδ11 · · · ci1,τ,a1n11 κδ1n1 · · · civ ,τ,av1v κδv1 · · · civ ,τ,avnvv κδvnv) ∈ Z+.

If z = y, then z ∈ L(HG,k,w), by the construction of W (w). Otherwise, ciτ = ai, for

all i, and |τ | = mG + k. In order to show x ∈ MG,k,w, it therefore suffices to show

that ci11 · · · cinn ∈ L(HG,k,w). But ci11 · · · cinn = wφ, for some φ ∈ Bk, as required.

Now suppose x ∈MG,k,w. Then x = zθφ for some z ∈ L(HG,k,w), φ ∈ B∗ with |φ|B =

mG + k, where θ : Ĉ∗ → C∗ is the projection map. Thus there exists ψ ∈ Bk

such that wψ = z. If |ψ|Bk = 0, then z = w, and we can simply choose y =

ei,τ,b111 ei,τ,b122 · · · es,τ,b1n11 · · · es,τ,bg1g e
s,τ,bg2
g · · · es,τ,bgngg ∈ W (w) such that b11 · · · bgng = x,

x ∈ L(Ek,w,y)η.

Otherwise, pick any y ∈ W (w), and write ψ = ψ1 · · ·ψt with each ψi ∈ Bri,si,k,

noting that t ≥ 1. For each i ∈ {1, . . . , t− 1}, choose any τi ∈ Φusi ,k
. Let τt = φ.

Then

yψτ11 · · ·ψτtt = κδ0c
s,τt,a11
1 κδ11 · · · c

s,τt,a1n1
1 κδ1n1

· · · cs,τt,av1v κδv1 · · · cs,τt,avnvv κδvnv ,

where c1 · · · cn = wψ = zθ, a11 · · · avnv = zθτt = zθφ = x, δ0, δ11, . . . , δvnv ∈ Z≥0.

Thus yψτ11 · · ·ψτtt η = x, and x ∈ L(Ek,w,y)η, as required. �

Using the results from Section B.6, we can now show that EPDT0L languages are

finite unions of WPDT0L languages.

Lemma B.7.2. A non-empty EPDT0L language is a finite union of WPDT0L

languages.

196

Appendix B: L-Systems

Proof Using the fact that singletons are WPDT0L (Lemma B.5.4), the result

follows from Lemma B.6.15 and Lemma B.7.1. �

It now remains to show that finite unions of WPDT0L languages are WPDT0L.

Lemma B.7.3. Finite unions of WPDT0L languages are WPDT0L.

Proof Let L and M be WPDT0L languages over an alphabet Σ. Suppose L ∪

M 6= ∅. There exist PDT0L languages KL and KM , accepted by PDT0L systems

(CL, ωL, BL) and (CM , ωM , BM), respectively, together with weak codings θL and

θM , such that L = KLθL and M = KMθM . By replacing CM with a copy of itself

that is disjoint from CL, and updating φM accordingly, we can assume that CL and

CM are disjoint.

Let ⊥/∈ CL ∪CM and C = {⊥} ∪CL ∪CM . For all ψ ∈ BL, define ψ̄ ∈ End(C∗) by

cψ̄ =

 cψ c ∈ CL
c c /∈ CL.

Define ψ̄ for each ψ ∈ CM analogously. Define φL, φM ∈ End(C∗) by

cφL =

 ωL c =⊥

c c 6=⊥,
cφM =

 ωM c =⊥

c c 6=⊥ .

Let B = {ψ̄ | ψ ∈ BL ∪ BM} ∪ {φ}. Note that L 6= ∅, and so there exists u ∈ L.

Define the coding θ : C∗ → Σ∗ by

cθ =

cθL c ∈ CL
cθM c ∈ CM
u c =⊥ .

Consider the DPT0L system H = (C, ⊥, B), and let K be the language it accepts.

By construction, Kθ = L ∪M . �

As with Section B.6, we use the fact that non-erasing homomorphisms are homo-

morphisms to show that the classes of EDT0L, WPDT0L and HPDT0L are all

197

Appendix B: L-Systems

equal.

Theorem B.7.4. Let L be a non-empty language. Then the following are equivalent:

1. L is EDT0L;

2. L is WPDT0L;

3. L is HPDT0L.

Proof (1) ⇒ (2): Using the fact that the class of CDT0L languages is closed

under finite unions (Lemma B.7.3), together with the fact that {ε} is WPDT0L

(Lemma B.5.4), it suffices to show that L\{ε} is CDT0L. By Theorem B.3.1, L\{ε}

is EPDT0L. So by Lemma B.7.2, L\{ε} is a finite union of WPDT0L languages.

The result now follows by Lemma B.7.3.

(2)⇒ (3): This follows as weak codings are homomorphisms.

(3) ⇒ (1): Since PDT0L languages are EDT0L, this follows by the fact that the

class of EDT0L languages is closed under applying a homomorphism (Theorem 3.3.2

(5)). �

B.8 ET0L languages and indexed languages

The fact that ET0L languages are indexed was noted in works of Christensen and

Salomaa in 1974 ([16], [88]), and seemingly first proved by Ehrenfeucht, Rozenberg

and Skyum that year [42]. Also in the same year, Salomaa conjectured that this

containment is proper [88], a fact that was proved by Ehrenfeucht, Rozenberg and

Skyum ([42], [39]). We give our own argument below.

Theorem B.8.1. ET0L languages are indexed.

Proof Let L be an ET0L language accepted by an ET0L system (Σ, C, ⊥, B∗);

we use Theorem 3.3.1 to assume that this ET0L system has a single-letter start

word, and rational control of the form B∗. We will use this to define an indexed

grammar for L.

198

Appendix B: L-Systems

We will define an indexed grammar to accept L. Our set of non-terminals will be

V = {S, T} t C̄, where C̄ = {c̄ | c ∈ C} is a disjoint copy of C. We extend the

action of the tables in B on C to C̄. Our start symbol will be S. Our alphabet of

indices will be χ = B ∪ {$}, where $ will be used as an end of stack marker. Our

set of productions P will be:

S→ T$ c̄φ → w̄ for all w̄ ∈ cφ, c̄ ∈ C̄, φ ∈ B

T→ Tφ for all φ ∈ B c̄$ → c for all c ∈ Σ

T→ ⊥̄

Let G = (V, Σ, P , S) be an indexed grammar. We will show that G accepts L. For

any word w ∈ L, we have that w ∈⊥ φ1 · · ·φn for some φ1, . . . , φn ∈ B. Thus we

can use the sequence of productions

S→ T$ → T$φ1 → · · · → T$φ1···φn → ⊥̄$φ1···φn .

After this, we can pop the φn off the word to obtain a word in ⊥̄φn, where every

letter will have the index $φ1 · · ·φn−1. Proceeding in this manner to pop all of

the φ1 · · ·φn−1 from all of the letters will yield any choice of a word in ⊥̄φ1 · · ·φn,

where every letter has the flag $. Since w̄ ∈ ⊥̄φ1 · · ·φn, we can choose a sequence

of productions to yield w̄, where every letter is indexed using $. We then apply the

production c̄$ → c to each letter in w̄ to yield w.

Conversely, any word w accepted by G will have to satisfy w̄ ∈ ⊥̄φ1 · · ·φn for some

φ1, . . . φn ∈ B. Thus w ∈ L. �

The fact that there exist indexed was originally proved by Rozenberg, Ehrenfeucht

and Skyum (([42], [39])). We give an example here.

Theorem B.8.2 ([42], Theorem 3). Let K be a language over an alphabet Σ that

is context-free but not EDT0L. Let Σ̄ = {ā | a ∈ Σ} be a distinct copy of Σ. Then

MK = {ww̄ | w ∈ K}

199

Appendix B: L-Systems

is indexed but not ET0L.

It was shown in [20] that the word problem of any free group of rank at least 2 is

not EDT0L. As this language is context-free, we now have an example of a language

that is indexed but not ET0L.

200

Bibliography

[1] J. Adams, E. Freden, and M. Mishna. From indexed grammars to generating

functions. RAIRO Theor. Inform. Appl., 47(4):325–350, 2013.

[2] A. V. Aho. Indexed grammars—an extension of context-free grammars. J.

Assoc. Comput. Mach., 15:647–671, 1968.

[3] A. V. Aho. Nested stack automata. J. Assoc. Comput. Mach., 16:383–406,

1969.

[4] T. Andreescu and D. Andrica. Quadratic Diophantine equations, volume 40 of

Developments in Mathematics. Springer, New York, 2015. With a foreword by

Preda Mihăilescu.

[5] A. V. Anisimov. Group languages. Cybernetics and Systems Analysis, 7:594–

601, 1971.

[6] P. Asveld. A Characterization of ET0L and EDT0L Languages. Number 129

in Memorandum / Department of Applied Mathematics. University of Twente,

Department of Applied Mathematics, 1976.

[7] P. R. J. Asveld. Controlled iteration grammars and full hyper-AFL’s. Infor-

mation and Control, 34(3):248–269, 1977.

[8] M. Benson. Growth series of finite extensions of Zn are rational. Invent. Math.,

73(2):251–269, 1983.

[9] A. Bishop. Geodesic growth in virtually abelian groups. J. Algebra, 573:760–

786, 2021.

201

BIBLIOGRAPHY

[10] A. Bishop and M. Elder. Bounded automata groups are co-ET0L. arXiv e-

prints, 2018. arXiv:1811.10157.

[11] A. Bishop and M. Elder. Bounded automata groups are co-ET0L. In Lan-

guage and automata theory and applications, volume 11417 of Lecture Notes in

Comput. Sci., pages 82–94. Springer, Cham, 2019.

[12] C. Bleak, F. Matucci, and M. Neunhöffer. Embeddings into Thompson’s group

V and coCF groups. J. Lond. Math. Soc. (2), 94(2):583–597, 2016.

[13] O. Bogopolski, A. Martino, and E. Ventura. Orbit decidability and the con-

jugacy problem for some extensions of groups. Trans. Amer. Math. Soc.,

362(4):2003–2036, 2010.

[14] T. Brough, L. Ciobanu, M. Elder, and G. Zetzsche. Permutations of context-

free, ET0L and indexed languages. Discrete Math. Theor. Comput. Sci.,

17(3):167–178, 2016.

[15] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free lan-

guages. In Computer programming and formal systems, pages 118–161. North-

Holland, Amsterdam, 1963.

[16] P. A. Christensen. Hyper-AFL’s and ET0L systems. In L systems (Third Open

House, Comput. Sci. Dept., Aarhus Univ., Aarhus, 1974), pages 254–257, 327–

338. Lecture Notes in Comput. Sci., Vol. 15. 1974.

[17] L. Ciobanu, V. Diekert, and M. Elder. Solution sets for equations over free

groups are EDT0L languages. Internat. J. Algebra Comput., 26(5):843–886,

2016.

[18] L. Ciobanu and M. Elder. Solutions sets to systems of equations in hyperbolic

groups are EDT0L in PSPACE. In 46th International Colloquium on Automata,

Languages, and Programming, volume 132 of LIPIcs. Leibniz Int. Proc. Inform.,

pages Art. No. 110, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019.

[19] L. Ciobanu and M. Elder. The complexity of solution sets to equations in

hyperbolic groups. Israel J. Math., 245(2):869–920, 2021.

202

BIBLIOGRAPHY

[20] L. Ciobanu, M. Elder, and M. Ferov. Applications of L systems to group theory.

Internat. J. Algebra Comput., 28(2):309–329, 2018.

[21] L. Ciobanu, S. Hermiller, D. Holt, and S. Rees. Conjugacy languages in groups.

Israel J. Math., 211(1):311–347, 2016.

[22] L. Ciobanu, D. Holt, and S. Rees. Equations in groups that are virtually direct

products. J. Algebra, 545:88–99, 2020.

[23] A. E. Clement, S. Majewicz, and M. Zyman. The theory of nilpotent groups.

Birkhäuser/Springer, Cham, 2017.

[24] R. Cluckers, J. Gordon, and I. Halupczok. Integrability of oscillatory functions

on local fields: transfer principles. Duke Math. J., 163(8):1549–1600, 2014.

[25] M. Cordes, J. Russell, D. Spriano, and A. Zalloum. Regularity of Morse

geodesics and growth of stable subgroups, 2020. arXiv:2008.06379.

[26] F. Dahmani. Existential questions in (relatively) hyperbolic groups. Israel J.

Math., 173:91–124, 2009.

[27] F. Dahmani and V. Guirardel. Foliations for solving equations in groups: free,

virtually free, and hyperbolic groups. J. Topol., 3(2):343–404, 2010.

[28] T. C. Davis and A. Y. Olshanskii. Relative subgroup growth and subgroup

distortion. Groups Geom. Dyn., 9(1):237–273, 2015.

[29] J. Denef. The rationality of the Poincaré series associated to the p-adic points

on a variety. Invent. Math., 77(1):1–23, 1984.

[30] V. Diekert. More than 1700 years of word equations. In Algebraic informatics,

volume 9270 of Lecture Notes in Comput. Sci., pages 22–28. Springer, Cham,

2015.

[31] V. Diekert and M. Elder. Solutions to twisted word equations and equations in

virtually free groups. Internat. J. Algebra Comput., 30(4):731–819, 2020.

[32] V. Diekert, A. Jeż, and M. Kufleitner. Solutions of word equations over par-

tially commutative structures. In 43rd International Colloquium on Automata,

203

BIBLIOGRAPHY

Languages, and Programming, volume 55 of LIPIcs. Leibniz Int. Proc. Inform.,

pages Art. No. 127, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.

[33] V. Diekert and A. Muscholl. Solvability of equations in free partially commu-

tative groups is decidable. In Automata, languages and programming, volume

2076 of Lecture Notes in Comput. Sci., pages 543–554. Springer, Berlin, 2001.

[34] M. Duchin, H. Liang, and M. Shapiro. Equations in nilpotent groups. Proc.

Amer. Math. Soc., 143(11):4723–4731, 2015.

[35] M. Duchin and M. Shapiro. The Heisenberg group is pan-rational. Adv. Math.,

346:219–263, 2019.

[36] A. Duncan, A. Evetts, D. Holt, and S. Rees. Using EDT0L systems to

solve equations in the solvable Baumslag-Solitar groups. arXiv e-prints,

arXiv:2204.13758, 2022.

[37] M. J. Dunwoody. The accessibility of finitely presented groups. Invent. Math.,

81(3):449–457, 1985.

[38] A. Ehrenfeucht and G. Rozenberg. Nonterminals versus homomorphisms in

defining languages for some classes of rewriting systems. Acta Informat., 3:265–

283, 1973/74.

[39] A. Ehrenfeucht and G. Rozenberg. On decomposing some etol languages into

deterministic etol languages. 1974. University of Colorado Technical Report.

[40] A. Ehrenfeucht and G. Rozenberg. On inverse homomorphic images of deter-

ministic ETOL languages. In Automata, languages, development, pages 179–

189. 1976.

[41] A. Ehrenfeucht and G. Rozenberg. On some context free languages that are

not deterministic ETOL languages. RAIRO Informat. Théor., 11(4):273–291,

i, 1977.

[42] A. Ehrenfeucht, G. Rozenberg, and S. Skyum. A relationship between ETOL

and EDTOL languages. Theoret. Comput. Sci., 1(4):325–330, 1975/76.

204

BIBLIOGRAPHY

[43] S. Eilenberg and M. P. Schützenberger. Rational sets in commutative monoids.

J. Algebra, 13:173–191, 1969.

[44] J. L. Eršov. Elementary group theories. Dokl. Akad. Nauk SSSR, 203:1240–

1243, 1972.

[45] A. Evetts. Rational growth in virtually abelian groups. Illinois J. Math.,

63(4):513–549, 2019.

[46] A. Evetts. Aspects of growth in finitely generated groups. PhD thesis, Heriot-

Watt University, 2020.

[47] A. Evetts and A. Levine. Equations in virtually abelian groups: Languages and

growth. Internat. J. Algebra Comput., 32(3):411–442, 2022.

[48] D. Farley. Local similarity groups with context-free co-word problem. In Topo-

logical methods in group theory, volume 451 of London Math. Soc. Lecture Note

Ser., pages 67–91. Cambridge Univ. Press, Cambridge, 2018.

[49] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University

Press, Cambridge, 2009.

[50] A. Garreta, A. Miasnikov, and D. Ovchinnikov. Random nilpotent groups,

polycyclic presentations, and Diophantine problems. Groups Complex. Cryptol.,

9(2):99–115, 2017.

[51] R. H. Gilman. Formal languages and their application to combinatorial group

theory. In Groups, languages, algorithms, volume 378 of Contemp. Math., pages

1–36. Amer. Math. Soc., Providence, RI, 2005.

[52] Z. Grunschlag. Algorithms in geometric group theory. PhD thesis, 1999.

[53] T. Herbst and R. M. Thomas. Group presentations, formal languages and

characterizations of one-counter groups. Theoret. Comput. Sci., 112(2):187–

213, 1993.

[54] D. F. Holt and S. Rees. Regularity of quasigeodesics in a hyperbolic group.

Internat. J. Algebra Comput., 13(5):585–596, 2003.

205

BIBLIOGRAPHY

[55] D. F. Holt, S. Rees, and C. E. Röver. Groups with context-free conjugacy

problems. Internat. J. Algebra Comput., 21(1-2):193–216, 2011.

[56] D. F. Holt, S. Rees, and C. E. Röver. Groups, languages and automata, vol-

ume 88 of London Mathematical Society Student Texts. Cambridge University

Press, Cambridge, 2017.

[57] D. F. Holt, S. Rees, C. E. Röver, and R. M. Thomas. Groups with context-free

co-word problem. J. London Math. Soc. (2), 71(3):643–657, 2005.

[58] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages,

and computation. Addison-Wesley Series in Computer Science. Addison-Wesley

Publishing Co., Reading, Mass., 1979.

[59] L. K. Hua. Introduction to number theory. Springer-Verlag, Berlin-New York,

1982. Translated from the Chinese by Peter Shiu.

[60] O. Kharlampovich, L. López, and A. Myasnikov. The Diophantine problem in

some metabelian groups. Math. Comp., 89(325):2507–2519, 2020.

[61] D. Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium

on Foundations of Computer Science (Providence, R.I., 1977), pages 254–266.

1977.

[62] J. Lehnert and P. Schweitzer. The co-word problem for the Higman-Thompson

group is context-free. Bull. Lond. Math. Soc., 39(2):235–241, 2007.

[63] H. W. Lenstra, Jr. Solving the Pell equation. In Algorithmic number theory:

lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res.

Inst. Publ., pages 1–23. Cambridge Univ. Press, Cambridge, 2008.

[64] A. Levine. Solving equations in class 2 nilpotent groups. arXiv e-prints,

arXiv:2009.10651, 2020.

[65] A. Levine. EDT0L solutions to equations in group extensions. arXiv e-prints,

arXiv:2108.09390, 2021.

[66] A. Levine. Formal languages, quadratic Diophantine equations and the Heisen-

berg group. arXiv e-prints, arXiv:2203.04849, 2022.

206

BIBLIOGRAPHY

[67] G. S. Makanin. Systems of equations in free groups. Sibirsk. Mat. Ž., 13:587–

595, 1972.

[68] G. S. Makanin. The problem of the solvability of equations in a free semigroup.

Mat. Sb. (N.S.), 103(145)(2):147–236, 319, 1977.

[69] G. S. Makanin. Equations in a free group. Izv. Akad. Nauk SSSR Ser. Mat.,

46(6):1199–1273, 1344, 1982.

[70] A. Mann. How groups grow, volume 395 of London Mathematical Society Lecture

Note Series. Cambridge University Press, Cambridge, 2012.

[71] P. Massazza. Holonomic functions and their relation to linearly constrained

languages. RAIRO Inform. Théor. Appl., 27(2):149–161, 1993.

[72] J. V. Matijasevič. The Diophantineness of enumerable sets. Dokl. Akad. Nauk

SSSR, 191:279–282, 1970.

[73] D. Meuser. On the rationality of certain generating functions. Math. Ann.,

256(3):303–310, 1981.

[74] D. E. Muller and P. E. Schupp. Groups, the theory of ends, and context-free

languages. J. Comput. System Sci., 26(3):295–310, 1983.

[75] M. Nielsen, G. Rozenberg, A. Salomaa, and S. Skyum. Nonterminals, homomor-

phisms and codings in different variations of OL-systems. II. Nondeterministic

systems. Acta Informat., 3:357–364, 1973/74.

[76] M. Nielsen, G. Rozenberg, A. Salomaa, and S. Skyum. Nonterminals, homo-

morphisms and codings in different variations of OL-systems. I. Deterministic

systems. Acta Informat., 4:87–106, 1974/75.

[77] C. H. Papadimitriou. Computational complexity. Addison-Wesley Publishing

Company, Reading, MA, 1994.

[78] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-

metik ganzer Zahlen, in welchem die Addition als einzige Operation hervor-

tritt. Comptes-rendus du I Congrès des Mathématiciens des Pays Slaves, pages

92–101, 1929.

207

BIBLIOGRAPHY

[79] A. A. Razborov. On systems of equations in free groups. PhD thesis, 1971. In

Russian.

[80] A. A. Razborov. On systems of equations in free groups. In Combinatorial and

geometric group theory (Edinburgh, 1993), volume 204 of London Math. Soc.

Lecture Note Ser., pages 269–283. Cambridge Univ. Press, Cambridge, 1995.

[81] N. N. Repin. Solvability of equations with one indeterminate in nilpotent

groups. Izv. Akad. Nauk SSSR Ser. Mat., 48(6):1295–1313, 1984.

[82] E. Rips and Z. Sela. Canonical representatives and equations in hyperbolic

groups. Invent. Math., 120(3):489–512, 1995.

[83] V. A. Roman’ kov. Unsolvability of the problem of endomorphic reducibility

in free nilpotent groups and in free rings. Algebra i Logika, 16(4):457–471, 494,

1977.

[84] V. A. Roman’kov. Diophantine questions in the class of finitely generated

nilpotent groups. J. Group Theory, 19(3):497–514, 2016.

[85] G. Rozenberg. Extension of tabled OL-systems and languages. Internat. J.

Comput. Information Sci., 2:311–336, 1973.

[86] G. Rozenberg and A. Salomaa. The mathematical theory of L systems, vol-

ume 90 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt

Brace Jovanovich, Publishers], New York-London, 1980.

[87] G. Rozenberg and A. Salomaa, editors. Handbook of formal languages. Vol. 1.

Springer-Verlag, Berlin, 1997. Word, language, grammar.

[88] A. Salomaa. Parallelism in rewriting systems. In Automata, languages and

programming (Second Colloq., Univ. Saarbrücken, Saarbrücken, 174), pages

523–533. Lecture Notes in Comput. Sci., Vol. 14. 1974.

[89] R. E. Sawilla, A. K. Silvester, and H. C. Williams. A new look at an old equa-

tion. In Algorithmic number theory, volume 5011 of Lecture Notes in Comput.

Sci., pages 37–59. Springer, Berlin, 2008.

208

BIBLIOGRAPHY

[90] M. Shapiro. A note on context-sensitive languages and word problems. Internat.

J. Algebra Comput., 4(4):493–497, 1994.

[91] C. L. Siegel. Zur Theorie der quadratischen Formen. Nachr. Akad. Wiss.

Göttingen Math.-Phys. Kl. II, pages 21–46, 1972.

[92] J. van Leeuwen. Variations of a new machine model. In 17th Annual Symposium

on Foundations of Computer Science (Houston, Tex., 1976), pages 228–235.

1976.

209

	Introduction
	Preliminaries
	Formal languages
	Free monoids
	Space complexity
	Regular languages
	Rational and recognisable subsets of monoids
	Group equations and languages
	Group equations
	Solution languages

	EDT0L languages
	Introduction
	EDT0L languages
	Alternative definitions and closure properties

	Equations in virtually abelian groups
	Introduction
	Preliminaries
	Polyhedral sets
	Multivariable finite-state automata
	Multivariable solution languages

	Solution languages in virtually abelian groups
	Relative growth of algebraic sets
	Structure of virtually abelian groups
	Univariate growth series of algebraic sets
	Multivariate Growth Series

	Equations in extensions
	Introduction
	Preliminaries
	Dihedral Artin groups
	Schreier generators

	EDT0L languages about a distinguished letter
	Equations in extensions
	Recognisable constraints and finite index subgroups
	Virtually direct products of hyperbolic groups

	Equations in the Heisenberg group
	Introduction
	Preliminaries
	Nilpotent groups
	Mal'cev normal form
	Equations in the ring of integers
	Solution languages

	`Dividing EDT0L' languages by a constant
	Pell's equation
	Quadratic equations in the ring of integers
	From Heisenberg equations to integer equations

	Equations in class 2 nilpotent groups
	Mal'cev generators
	Transforming equations in nilpotent groups into equations over Z
	Equations in virtually Heisenberg groups

	Context-free and indexed languages
	Context-free languages
	Indexed languages

	L-Systems
	ET0L languages
	CSPD Automata
	EPDT0L languages
	The Copying Lemma
	DT0L languages
	HDT0L, NDT0L, WDT0L and CDT0L languages
	WPDT0L and HPDT0L languages
	ET0L languages and indexed languages

	Bibliography

